HEPfit as a SMEFT fitting framework Luca Silvestrini INFN, Rome - Introduction - The HEPfit framework: - Statistical approach - Likelihood input and output: correlations, non-Gaussianities, parametrization - Status of the SMEFT implementation - Outlook #### HEPfit: INTRODUCTION #### Basic ideas behind HEPfit: - combine state-of-the-art theoretical calculations and current experimental data to - perform a Bayesian fit of model parameters, i.e. obtain a numerical representation of the (joint) p.d.f of model parameters (and observables) given priors for parameters and exp. data - predict observables - compare models using e.g. information criteria for any model ⊇ Standard Model #### HEPfit: INTRODUCTION II - Provide a flexible, open source tool written in C++, with different levels of usage possible: - Full Bayesian fits with MCMC engine - Likelihood calculation - Observable calculation - Users can: - add models - add observables #### THE HEPfit FRAMEWORK Eur. Phys. J. C (2020) 80:456 https://doi.org/10.1140/epjc/s10052-020-7904-z THE EUROPEAN PHYSICAL JOURNAL C Special Article - Tools for Experiment and Theory **HEPfit:** a code for the combination of indirect and direct constraints on high energy physics models J. de Blas^{1,2}, D. Chowdhury^{3,4}, M. Ciuchini⁵, A. M. Coutinho⁶, O. Eberhardt⁷, M. Fedele⁸, E. Franco⁹, G. Grilli di Cortona¹⁰, V. Miralles⁷, S. Mishima¹¹, A. Paul^{12,13,a}, A. Peñuelas⁷, M. Pierini¹⁴, L. Reina¹⁵, L. Silvestrini^{9,16}, M. Valli¹⁷, R. Watanabe⁵, N. Yokozaki¹⁸ - HEPfit web page - HEPfit documentation - GitHub repository #### GENERAL STRUCTURE - Basic building blocks: - Models, defined by a set of parameters (possibly correlated) and complemented by model-specific contributions to observables; - Observables, defined by a theoretical prediction and possibly by an experimental likelihood which can be binned, multi-dimensional w. correlation, numerical... - A parallel MCMC engine based on BAT and ROOT - Everything coded from scratch and validated against other public codes ### MCMC example: EW FIT in SM & oblique | | Measurement | Posterior | Prediction | Pull | |---|-------------------------|-------------------------|-------------------------|-------| | $\alpha_s(M_Z)$ | 0.1180 ± 0.0010 | 0.1180 ± 0.0009 | 0.1184 ± 0.0028 | -0.1 | | $\Delta \alpha_{ m had}^{(5)}(M_Z)$ | 0.02750 ± 0.00033 | 0.02743 ± 0.00025 | 0.02734 ± 0.00037 | 0.3 | | M_Z [GeV] | 91.1875 ± 0.0021 | 91.1880 ± 0.0021 | 91.198 ± 0.010 | -1.0 | | $m_t \; [\mathrm{GeV}]$ | $173.1 \pm 0.6 \pm 0.5$ | 173.43 ± 0.74 | 176.1 ± 2.2 | -1.3 | | $m_H [{ m GeV}]$ | 125.09 ± 0.24 | 125.09 ± 0.24 | 100.6 ± 23.6 | 1.0 | | M_W [GeV] | 80.379 ± 0.012 | 80.3643 ± 0.0058 | 80.3597 ± 0.0067 | 1.4 | | Γ_W [GeV] | 2.085 ± 0.042 | 2.08873 ± 0.00059 | 2.08873 ± 0.00059 | -0.1 | | $\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$ | 0.2324 ± 0.0012 | 0.231454 ± 0.000084 | 0.231449 ± 0.000085 | 0.8 | | $P_{\tau}^{\mathrm{pol}} = A_{\ell}$ | 0.1465 ± 0.0033 | 0.14756 ± 0.00066 | 0.14761 ± 0.00067 | -0.3 | | Γ_Z [GeV] | 2.4952 ± 0.0023 | 2.49424 ± 0.00056 | 2.49412 ± 0.00059 | 0.5 | | $\sigma_h^0 \text{ [nb]}$ | 41.540 ± 0.037 | 41.4898 ± 0.0050 | 41.4904 ± 0.0053 | 1.3 | | R_ℓ^0 | 20.767 ± 0.025 | 20.7492 ± 0.0060 | 20.7482 ± 0.0064 | 0.7 | | $\sigma_h^{ ilde{0}} ext{ [nb]} \ R_{\ell}^0 \ A_{ ext{FB}}^0 = 0$ | 0.0171 ± 0.0010 | 0.01633 ± 0.00015 | 0.01630 ± 0.00015 | 0.8 | | A_{ℓ} (SLD) | 0.1513 ± 0.0021 | 0.14756 ± 0.00066 | 0.14774 ± 0.00074 | 1.6 | | R_b^0 | 0.21629 ± 0.00066 | 0.215795 ± 0.000027 | 0.215793 ± 0.000027 | 0.7 | | $egin{array}{c} R_b^0 \ R_c^0 \end{array}$ | 0.1721 ± 0.0030 | 0.172228 ± 0.000020 | 0.172229 ± 0.000021 | -0.05 | | $A_{ m FB}^{0,b}$ | 0.0992 ± 0.0016 | 0.10345 ± 0.00047 | 0.10358 ± 0.00052 | -2.6 | | $A_{\mathrm{FB}}^{0,b} \ A_{\mathrm{FB}}^{0,c}$ | 0.0707 ± 0.0035 | 0.07394 ± 0.00036 | 0.07404 ± 0.00040 | -0.9 | | $A_b^{\Gamma B}$ | 0.923 ± 0.020 | 0.934787 ± 0.000054 | 0.934802 ± 0.000061 | -0.6 | | A_c | 0.670 ± 0.027 | 0.66813 ± 0.00029 | 0.66821 ± 0.00032 | 0.1 | | $\sin^2 \theta_{\text{eff}}^{\text{lept}}(\text{Tev/LHC})$ | 0.23166 ± 0.00032 | 0.231454 ± 0.000084 | 0.231438 ± 0.000087 | 0.7 | Table 1: Experimental measurement, posterior, prediction, and pull for the 5 input parameters ($\alpha_s(M_Z)$, $\Delta \alpha_{\rm had}^{(5)}(M_Z)$, M_Z , m_t , m_H), and for the main EWPO considered in the SM fit. The values in the column *Prediction* are determined without using the experimental information for the corresponding observable. Figure 1: 68% and 95% probability contours for S and T (U=0), together with the individual constraints from M_W , the asymmetry parameters $\sin^2\theta_{\rm eff}^{\rm lept}$, $P_{\tau}^{\rm pol}$, A_f , and $A_{\rm FB}^{0,f}$ ($f=\ell,c,b$), and Γ_Z . Dashed lines indicate the results from the fit without the updates from HC EWPO. #### The SMEFT in HEPfit: the Model • SMEFT in Warsaw basis with flavour universality almost fully implemented as a model: | Label | LaTeX symbol | Description | | |-------|-----------------------|--|--------------------------| | CG | C_G | The coefficient of the operator $\mathcal{O}_G=f_{ABC}G^{A u}_{m{ u}}G^{B ho}_{m{ u}}W^{C\mu}_{m{ u}}$. | | | cw | C_W | The coefficient of the operator $\mathcal{O}_W=arepsilon_{abc}W_{\mu}^{a u}W_{ u}^{b ho}W_{ ho}^{b\mu}$. | | | C2B | C_{2B} | The coefficient of the operator $\mathcal{O}_{2B}= rac{1}{2}(\partial_{ ho}B_{\mu u})^2$. (Implemented via EOM.) | | | C2W | C_{2W} | The coefficient of the operator $\mathcal{O}_{2W}= rac{1}{2}(D_ ho W_{\mu u}^a)^2$. (Implemented via EOM.) | 1 | | C2BS | C_{2B}^{SILH} | The coefficient of the SILH operator $\mathcal{O}_{2B}^{SILH}= rac{1}{2}(\partial^{\mu}B_{\mu u})(\partial_{ ho}B^{ ho u}).$ (Implemented via EOM.) | | | C2WS | C_{2W}^{SILH} | The coefficient of the operator $\mathcal{O}_{2W}^{SILH}= rac{1}{2}(D_{\mu}W^{a\mu u})(D^{ ho}W_{ ho u}^a)$. (Implemented via EOM.) | 1 | | CHG | C_{HG} | The coefficient of the operator $\mathcal{O}_{HG}=ig(H^\dagger Hig)G^A_{\mu u}G^{A\mu u}$. | 1 | | CHW | C_{HW} | The coefficient of the operator $\mathcal{O}_{HW}=\left(H^{\dagger}H ight)W^{a}_{\mu u}W^{a\mu u}.$ | | | СНВ | C_{HB} | The coefficient of the operator $\mathcal{O}_{HB}=ig(H^\dagger Hig)B_{\mu u}B^{\mu u}.$ | | | CDHB | C_{DHB} | The coefficient of the operator $\mathcal{O}_{DHB}=iig(D^{\mu}H^{\dagger}D^{ u}Hig)B_{\mu u}.$ | | | CDHW | C_{DHW} | The coefficient of the operator $\mathcal{O}_{DHW}=iigl(D^{\mu}H^{\dagger}\sigma^{a}D^{ u}Higr)W^{a}_{\mu u}.$ | | | CDB | C_{DB} | The coefficient of the operator $\mathcal{O}_{DB}= rac{i}{2}ig(H^\dagger \stackrel{\longleftrightarrow}{D}^\mu Hig)\partial^ u B_{\mu u}$. (Implemented via EOM.) | | | CDW | C_{DW} | The coefficient of the operator $\mathcal{O}_{DW}= rac{i}{2}ig(H^\dagger \overset{\leftrightarrow}{D}^{a\mu} Hig)D^{ u}W^a_{\mu u}$. (Implemented via EOM.) | | | CWB | C_{WB} | The coefficient of the operator $\mathcal{O}_{HWB}=ig(H^\dagger\sigma^aHig)W^a_{\mu u}B^{\mu u}.$ | ٦ | | CHD | C_{HD} | The coefficient of the operator $\mathcal{O}_{HD}=\left H^{\dagger}D_{\mu}H ight ^{2}.$ | | | ст | C_T | The coefficient of the operator $\mathcal{O}_T = rac{1}{2}ig(H^\dagger \overset{\longleftrightarrow}{D}_\mu Hig)^2.$ | | | CHbox | $C_{H\square}$ | The coefficient of the operator $\mathcal{O}_{H\square} = ig(H^\dagger Hig)\squareig(H^\dagger Hig).$ | 1 | | СН | C_H | The coefficient of the operator $\mathcal{O}_H = \left(H^\dagger H\right)^3$. | 7 | | CHL1 | $(C_{HL}^{(1)})_{ii}$ | The coefficient of the operator $(\mathcal{O}_{HL}^{(1)})_{tt}=iig(H^\dagger \overset{\longleftrightarrow}{D}_\mu Hig)ig(\overline{L^t}\gamma^\mu L^tig)$ (flavor universal). | | | CHL3 | $(C_{HL}^{(3)})_{ii}$ | The coefficient of the operator $(\mathcal{O}_{HL}^{(3)})_{ti}=iig(H^{\dagger}\overset{\leftrightarrow}{D_{\mu}^{a}}Hig)ig(\overline{L^{i}}\gamma^{\mu}\sigma^{a}L^{i}ig)$ (flavor universal). | | | СНе | $(C_{He})_{ii}$ | The coefficient of the operator $(\mathcal{O}_{He})_{ij}=iig(H^\dagger \overset{\longleftrightarrow}{D}_\mu Hig)ig(\overline{E^i}\gamma^\mu E^iig)$ (flavor universal). | $\rfloor_{\mathbb{Z}}$: | | CHQ1 | $(C_{HQ}^{(1)})_{ii}$ | The coefficient of the operator $(\mathcal{O}_{HQ}^{(1)})_{ii}=iig(H^{\dagger}\overset{\leftrightarrow}{D}_{\mu}Hig)ig(\overline{Q^{i}}\gamma^{\mu}Q^{i}ig)$ (flavor universal). | Si | | сноз | $(C_{HQ}^{(3)})_{ii}$ | The coefficient of the operator $(\mathcal{O}_{HQ}^{(3)})_{tt}=iig(H^\dagger \overset{\leftrightarrow}{D_\mu^a} Hig)ig(\overline{Q^t}\gamma^\mu\sigma^aQ^tig)$ (flavor universal). | | | | CHu | $(C_{Hu})_{ii}$ | The coefficient of the operator $(\mathcal{O}_{Hu})_{ii}=iig(H^\dagger\overset{\leftrightarrow}D_\mu Hig)ig(\overline{U^i}\gamma^\mu U^iig)$ (flavor universal). | | |------------|---|---|---|--| | | CHd $(C_{Hd})_{ii}$ CHud_r, CHud_i $Re[(C_{Hud})_{ii}], Im[(C_{Hud})_{ii}]$ | | The coefficient of the operator $(\mathcal{O}_{Hd})_{tt}=iig(H^\dagger \overset{\longleftrightarrow}{D}_\mu Hig)ig(\overline{D^i}\gamma^\mu D^iig)$ (flavor universal). | | | | | | The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{Hud})_{tt}=i(\widetilde{H}^\dagger D_\mu H)(\overline{U^i}\gamma^\mu D^i)$ (flavor universal). | | | | CeH_jjr, CeH_jji | $\mathrm{Re}ig[(C_{eH})_{jj}ig],\mathrm{Im}ig[(C_{eH})_{jj}ig]$ | The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{eH})_{jj}=(H^\dagger H)(\overline{L^j}HE^j)$ (flavor universal). | | | | CuH_jjr, CuH_jji | $\operatorname{Re}\left[(C_{uH})_{jj}\right],\operatorname{Im}\left[(C_{uH})_{jj}\right]$ | The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{\mathbf{u}H})_{jj}=(H^\dagger H)(\overline{Q^j}\widetilde{H}U^j)$ (flavor universal). | | | С | CdH_jjr, CdH_jji | $\text{Re}\left[(C_{dH})_{jj}\right], \text{Im}\left[(C_{dH})_{jj}\right]$ | The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{dH})_{jj}=(H^\dagger H)(\overline{Q^j}HD^j)$ (flavor universal). | | | | CuG_klr, CuG_kli | $\operatorname{Re}ig[(C_{uG})_{kl}ig],\operatorname{Im}ig[(C_{uG})_{kl}ig]$ | The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uG})_{ij}=(\overline{Q^i}\sigma^{\mu\nu}T_AU^j)\widetilde{H}G^{\Lambda}_{\mu\nu}$, for $i,j=1,2,3$. | | | | CuW_klr,
CuW_kli | $\operatorname{Re}ig[(C_{uW})_{kl}ig],\operatorname{Im}ig[(C_{uW})_{kl}ig]$ | The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{\mathbf{u}W})_{ij}=\left(\overline{Q^i}\sigma^{\mu\nu}\sigma_aU^j\right)\widetilde{H}W^a_{\mu\nu}$, for $i,j=1,2,3$. | | | | CuB_klr, CuB_kli | $\operatorname{Re}ig[(C_{uB})_{kl}ig],\operatorname{Im}ig[(C_{uB})_{kl}ig]$ | The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{\mathbf{u}B})_{ij}=(\overline{Q^i}\sigma^{\mu\nu}U^j)\widetilde{H}B_{\mu\nu}$, for $i,j=1,2,3$. | | | - | CLL | $(C_{LL})_{1221,2112}$ | The coefficient of the operator $(\mathcal{O}_{LL})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{L^k}\gamma_\mu L^lig)$, for $ijkl=1221,2112$. | | | - | CLQ1 | $C_{LQ}^{(1)}$ | The coefficient of the operator $(\mathcal{O}_{LQ}^{(1)})_{ljkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{Q^k}\gamma_\mu Q^lig)$. | | | | CLQ3 | $C_{LQ}^{(3)}$ | The coefficient of the operator $(\mathcal{O}_{LQ}^{(3)})_{ijkl}=ig(\overline{L^i}\gamma^\mu\sigma_aL^jig)ig(\overline{Q^k}\gamma_\mu\sigma_aQ^lig).$ | | | | Cee | C_{EE} | The coefficient of the operator $(\mathcal{O}_{EE})_{ijkl}=ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{E^k}\gamma_\mu E^lig).$ | | | | Ceu | C_{EU} | The coefficient of the operator $(\mathcal{O}_{EU})_{ijkl}=ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{U^k}\gamma_\mu U^lig)$. | | | | Ced | C_{ED} | The coefficient of the operator $(\mathcal{O}_{ED})_{ijkl}=ig(\overline{E^i}\;\gamma^\mu E^jig)ig(\overline{D^k}\;\gamma_\mu D^lig)$. | | | | CLe | C_{LE} | The coefficient of the operator $(\mathcal{O}_{LE})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{E^k}\gamma_\mu E^lig).$ | | | ϵ | CLu | C_{LU} | The coefficient of the operator $(\mathcal{O}_{LU})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{U^k}\gamma_\mu U^lig).$ | | | | CLd | C_{LD} | The coefficient of the operator $(\mathcal{O}_{LD})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{D^k}\gamma_\mu D^lig).$ | | | | CQe | C_{QE} | The coefficient of the operator $(\mathcal{O}_{QE})_{ijkl}=ig(\overline{Q^i}\gamma^\mu Q^jig)ig(\overline{E^k}\gamma_\mu E^lig)$. | | | | | | | | #### The SMEFT in HEPfit: the Model - Work in progress: - Implementation of (most) general flavour structure so far: some non-universality for EW, Higgs & B anomalies; - Implementation of full SMEFT RG running (WET running already state-of-the-art) - so far: some effects relevant for B anomalies; - Implementation of full matching on WET so far: some matching relevant for B anomalies; ## The SMEFT in HEPfit: model-specific contributions to observables - EWPO in α scheme - Systematic translation to Mw scheme (in progress) - LEPII - Higgs signal strengths - Dibosons (in progress) - STXS (in progress) #### The SMEFT in HEPfit: likelihoods - Experimental likelihoods can currently be implemented as: - Individual measurements with "exact" likelihood (Gaussian, ...) - 1D or 2D measurements with "numeric" likelihood (1D or 2D Histograms) - Binned measurements with "exact" likelihood, including correlations - Multi-dimensional measurements with "exact" likelihood, including correlations #### The SMEFT in HEPfit: likelihoods - Work in progress to implement full experimental likelihoods using the DNNLikelihood. Basic idea: Coccaro et al., '19 - Experiments publish full likelihood as a suitably trained DNN predictor - DNN predictor used for likelihood evaluation in HEPfit - Allows for implementation of all correlations and non-Gaussianities - · Any other numeric likelihood scheme can be implemented # The SMEFT in HEPfit: theory (and systematic) uncertainties - Experimental systematic uncertainties implemented as any other uncertainty, including correlations; - Same for "External" theoretical uncertainties, e.g. from calculation of EWPO; when distribution unspecified, try different distributions (flat, Gaussian, ...) - "Internal" theoretical uncertainties taken into account - In-run, by varying e.g. α_s , matching scale, etc... - A posteriori, e.g. by comparing results with or without quadratic terms ### The SMEFT in HEPfit: outputs - The output of a successful MCMC run is a numerical approximation of the joint p.d.f. for model parameters and observables, represented as: - Averages and correlations for all parameters; - Averages (and correlations) for all (correlated) observables; - 1D and 2D histograms and highest probability regions corresponding to 1σ , 2σ , 3σ , ...; - Optionally, the full MCMC chains, useful for combination with more data; - In progress: the corresponding DNNLikelihood #### CONCLUSION & OUTLOOK - HEPfit is a public C++ code providing an ideal framework for Bayesian fits in the SMEFT - It provides state-of-the-art calculations of EWPO and of several flavour and LHC observables; new observables are continuously added; - The SMEFT implementation is being completed with a richer flavour structure and the inclusion of RG effects: #### CONCLUSION & OUTLOOK - Any multi-dimensional analytic likelihood can be used; - The DNNLikelihood is being implemented both as input and as output, allowing for the full exploitation of experimental results and for efficient reuse of fit results; - Any other numerical likelihood parameterization can be readily implemented.