HEPfit as a SMEFT fitting framework

Luca Silvestrini INFN, Rome

- Introduction
- The HEPfit framework:
 - Statistical approach
 - Likelihood input and output: correlations, non-Gaussianities, parametrization
 - Status of the SMEFT implementation
- Outlook

HEPfit: INTRODUCTION

Basic ideas behind HEPfit:

- combine state-of-the-art theoretical calculations and current experimental data to
 - perform a Bayesian fit of model parameters, i.e. obtain a numerical representation of the (joint) p.d.f of model parameters (and observables) given priors for parameters and exp. data
 - predict observables
 - compare models using e.g. information criteria

for any model ⊇ Standard Model

HEPfit: INTRODUCTION II

- Provide a flexible, open source tool written in C++, with different levels of usage possible:
 - Full Bayesian fits with MCMC engine
 - Likelihood calculation
 - Observable calculation
- Users can:
 - add models
 - add observables

THE HEPfit FRAMEWORK

Eur. Phys. J. C (2020) 80:456 https://doi.org/10.1140/epjc/s10052-020-7904-z THE EUROPEAN
PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

HEPfit: a code for the combination of indirect and direct constraints on high energy physics models

J. de Blas^{1,2}, D. Chowdhury^{3,4}, M. Ciuchini⁵, A. M. Coutinho⁶, O. Eberhardt⁷, M. Fedele⁸, E. Franco⁹, G. Grilli di Cortona¹⁰, V. Miralles⁷, S. Mishima¹¹, A. Paul^{12,13,a}, A. Peñuelas⁷, M. Pierini¹⁴, L. Reina¹⁵, L. Silvestrini^{9,16}, M. Valli¹⁷, R. Watanabe⁵, N. Yokozaki¹⁸

- HEPfit web page
- HEPfit documentation
- GitHub repository

GENERAL STRUCTURE

- Basic building blocks:
 - Models, defined by a set of parameters (possibly correlated) and complemented by model-specific contributions to observables;
 - Observables, defined by a theoretical prediction and possibly by an experimental likelihood which can be binned, multi-dimensional w. correlation, numerical...
 - A parallel MCMC engine based on BAT and ROOT
 - Everything coded from scratch and validated against other public codes

MCMC example: EW FIT in SM & oblique

	Measurement	Posterior	Prediction	Pull
$\alpha_s(M_Z)$	0.1180 ± 0.0010	0.1180 ± 0.0009	0.1184 ± 0.0028	-0.1
$\Delta \alpha_{ m had}^{(5)}(M_Z)$	0.02750 ± 0.00033	0.02743 ± 0.00025	0.02734 ± 0.00037	0.3
M_Z [GeV]	91.1875 ± 0.0021	91.1880 ± 0.0021	91.198 ± 0.010	-1.0
$m_t \; [\mathrm{GeV}]$	$173.1 \pm 0.6 \pm 0.5$	173.43 ± 0.74	176.1 ± 2.2	-1.3
$m_H [{ m GeV}]$	125.09 ± 0.24	125.09 ± 0.24	100.6 ± 23.6	1.0
M_W [GeV]	80.379 ± 0.012	80.3643 ± 0.0058	80.3597 ± 0.0067	1.4
Γ_W [GeV]	2.085 ± 0.042	2.08873 ± 0.00059	2.08873 ± 0.00059	-0.1
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.2324 ± 0.0012	0.231454 ± 0.000084	0.231449 ± 0.000085	0.8
$P_{\tau}^{\mathrm{pol}} = A_{\ell}$	0.1465 ± 0.0033	0.14756 ± 0.00066	0.14761 ± 0.00067	-0.3
Γ_Z [GeV]	2.4952 ± 0.0023	2.49424 ± 0.00056	2.49412 ± 0.00059	0.5
$\sigma_h^0 \text{ [nb]}$	41.540 ± 0.037	41.4898 ± 0.0050	41.4904 ± 0.0053	1.3
R_ℓ^0	20.767 ± 0.025	20.7492 ± 0.0060	20.7482 ± 0.0064	0.7
$\sigma_h^{ ilde{0}} ext{ [nb]} \ R_{\ell}^0 \ A_{ ext{FB}}^0 = 0$	0.0171 ± 0.0010	0.01633 ± 0.00015	0.01630 ± 0.00015	0.8
A_{ℓ} (SLD)	0.1513 ± 0.0021	0.14756 ± 0.00066	0.14774 ± 0.00074	1.6
R_b^0	0.21629 ± 0.00066	0.215795 ± 0.000027	0.215793 ± 0.000027	0.7
$egin{array}{c} R_b^0 \ R_c^0 \end{array}$	0.1721 ± 0.0030	0.172228 ± 0.000020	0.172229 ± 0.000021	-0.05
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	0.10345 ± 0.00047	0.10358 ± 0.00052	-2.6
$A_{\mathrm{FB}}^{0,b} \ A_{\mathrm{FB}}^{0,c}$	0.0707 ± 0.0035	0.07394 ± 0.00036	0.07404 ± 0.00040	-0.9
$A_b^{\Gamma B}$	0.923 ± 0.020	0.934787 ± 0.000054	0.934802 ± 0.000061	-0.6
A_c	0.670 ± 0.027	0.66813 ± 0.00029	0.66821 ± 0.00032	0.1
$\sin^2 \theta_{\text{eff}}^{\text{lept}}(\text{Tev/LHC})$	0.23166 ± 0.00032	0.231454 ± 0.000084	0.231438 ± 0.000087	0.7

Table 1: Experimental measurement, posterior, prediction, and pull for the 5 input parameters ($\alpha_s(M_Z)$, $\Delta \alpha_{\rm had}^{(5)}(M_Z)$, M_Z , m_t , m_H), and for the main EWPO considered in the SM fit. The values in the column *Prediction* are determined without using the experimental information for the corresponding observable.

Figure 1: 68% and 95% probability contours for S and T (U=0), together with the individual constraints from M_W , the asymmetry parameters $\sin^2\theta_{\rm eff}^{\rm lept}$, $P_{\tau}^{\rm pol}$, A_f , and $A_{\rm FB}^{0,f}$ ($f=\ell,c,b$), and Γ_Z . Dashed lines indicate the results from the fit without the updates from HC EWPO.

The SMEFT in HEPfit: the Model

• SMEFT in Warsaw basis with flavour universality almost fully implemented as a model:

Label	LaTeX symbol	Description	
CG	C_G	The coefficient of the operator $\mathcal{O}_G=f_{ABC}G^{A u}_{m{ u}}G^{B ho}_{m{ u}}W^{C\mu}_{m{ u}}$.	
cw	C_W	The coefficient of the operator $\mathcal{O}_W=arepsilon_{abc}W_{\mu}^{a u}W_{ u}^{b ho}W_{ ho}^{b\mu}$.	
C2B	C_{2B}	The coefficient of the operator $\mathcal{O}_{2B}=rac{1}{2}(\partial_{ ho}B_{\mu u})^2$. (Implemented via EOM.)	
C2W	C_{2W}	The coefficient of the operator $\mathcal{O}_{2W}=rac{1}{2}(D_ ho W_{\mu u}^a)^2$. (Implemented via EOM.)	1
C2BS	C_{2B}^{SILH}	The coefficient of the SILH operator $\mathcal{O}_{2B}^{SILH}=rac{1}{2}(\partial^{\mu}B_{\mu u})(\partial_{ ho}B^{ ho u}).$ (Implemented via EOM.)	
C2WS	C_{2W}^{SILH}	The coefficient of the operator $\mathcal{O}_{2W}^{SILH}=rac{1}{2}(D_{\mu}W^{a\mu u})(D^{ ho}W_{ ho u}^a)$. (Implemented via EOM.)	1
CHG	C_{HG}	The coefficient of the operator $\mathcal{O}_{HG}=ig(H^\dagger Hig)G^A_{\mu u}G^{A\mu u}$.	1
CHW	C_{HW}	The coefficient of the operator $\mathcal{O}_{HW}=\left(H^{\dagger}H ight)W^{a}_{\mu u}W^{a\mu u}.$	
СНВ	C_{HB}	The coefficient of the operator $\mathcal{O}_{HB}=ig(H^\dagger Hig)B_{\mu u}B^{\mu u}.$	
CDHB	C_{DHB}	The coefficient of the operator $\mathcal{O}_{DHB}=iig(D^{\mu}H^{\dagger}D^{ u}Hig)B_{\mu u}.$	
CDHW	C_{DHW}	The coefficient of the operator $\mathcal{O}_{DHW}=iigl(D^{\mu}H^{\dagger}\sigma^{a}D^{ u}Higr)W^{a}_{\mu u}.$	
CDB	C_{DB}	The coefficient of the operator $\mathcal{O}_{DB}=rac{i}{2}ig(H^\dagger \stackrel{\longleftrightarrow}{D}^\mu Hig)\partial^ u B_{\mu u}$. (Implemented via EOM.)	
CDW	C_{DW}	The coefficient of the operator $\mathcal{O}_{DW}=rac{i}{2}ig(H^\dagger \overset{\leftrightarrow}{D}^{a\mu} Hig)D^{ u}W^a_{\mu u}$. (Implemented via EOM.)	
CWB	C_{WB}	The coefficient of the operator $\mathcal{O}_{HWB}=ig(H^\dagger\sigma^aHig)W^a_{\mu u}B^{\mu u}.$	٦
CHD	C_{HD}	The coefficient of the operator $\mathcal{O}_{HD}=\left H^{\dagger}D_{\mu}H ight ^{2}.$	
ст	C_T	The coefficient of the operator $\mathcal{O}_T = rac{1}{2}ig(H^\dagger \overset{\longleftrightarrow}{D}_\mu Hig)^2.$	
CHbox	$C_{H\square}$	The coefficient of the operator $\mathcal{O}_{H\square} = ig(H^\dagger Hig)\squareig(H^\dagger Hig).$	1
СН	C_H	The coefficient of the operator $\mathcal{O}_H = \left(H^\dagger H\right)^3$.	7
CHL1	$(C_{HL}^{(1)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HL}^{(1)})_{tt}=iig(H^\dagger \overset{\longleftrightarrow}{D}_\mu Hig)ig(\overline{L^t}\gamma^\mu L^tig)$ (flavor universal).	
CHL3	$(C_{HL}^{(3)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HL}^{(3)})_{ti}=iig(H^{\dagger}\overset{\leftrightarrow}{D_{\mu}^{a}}Hig)ig(\overline{L^{i}}\gamma^{\mu}\sigma^{a}L^{i}ig)$ (flavor universal).	
СНе	$(C_{He})_{ii}$	The coefficient of the operator $(\mathcal{O}_{He})_{ij}=iig(H^\dagger \overset{\longleftrightarrow}{D}_\mu Hig)ig(\overline{E^i}\gamma^\mu E^iig)$ (flavor universal).	$\rfloor_{\mathbb{Z}}$:
CHQ1	$(C_{HQ}^{(1)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HQ}^{(1)})_{ii}=iig(H^{\dagger}\overset{\leftrightarrow}{D}_{\mu}Hig)ig(\overline{Q^{i}}\gamma^{\mu}Q^{i}ig)$ (flavor universal).	Si
сноз	$(C_{HQ}^{(3)})_{ii}$	The coefficient of the operator $(\mathcal{O}_{HQ}^{(3)})_{tt}=iig(H^\dagger \overset{\leftrightarrow}{D_\mu^a} Hig)ig(\overline{Q^t}\gamma^\mu\sigma^aQ^tig)$ (flavor universal).	

	CHu	$(C_{Hu})_{ii}$	The coefficient of the operator $(\mathcal{O}_{Hu})_{ii}=iig(H^\dagger\overset{\leftrightarrow}D_\mu Hig)ig(\overline{U^i}\gamma^\mu U^iig)$ (flavor universal).	
	CHd $(C_{Hd})_{ii}$ CHud_r, CHud_i $Re[(C_{Hud})_{ii}], Im[(C_{Hud})_{ii}]$		The coefficient of the operator $(\mathcal{O}_{Hd})_{tt}=iig(H^\dagger \overset{\longleftrightarrow}{D}_\mu Hig)ig(\overline{D^i}\gamma^\mu D^iig)$ (flavor universal).	
			The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{Hud})_{tt}=i(\widetilde{H}^\dagger D_\mu H)(\overline{U^i}\gamma^\mu D^i)$ (flavor universal).	
	CeH_jjr, CeH_jji	$\mathrm{Re}ig[(C_{eH})_{jj}ig],\mathrm{Im}ig[(C_{eH})_{jj}ig]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{eH})_{jj}=(H^\dagger H)(\overline{L^j}HE^j)$ (flavor universal).	
	CuH_jjr, CuH_jji	$\operatorname{Re}\left[(C_{uH})_{jj}\right],\operatorname{Im}\left[(C_{uH})_{jj}\right]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{\mathbf{u}H})_{jj}=(H^\dagger H)(\overline{Q^j}\widetilde{H}U^j)$ (flavor universal).	
С	CdH_jjr, CdH_jji	$\text{Re}\left[(C_{dH})_{jj}\right], \text{Im}\left[(C_{dH})_{jj}\right]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{dH})_{jj}=(H^\dagger H)(\overline{Q^j}HD^j)$ (flavor universal).	
	CuG_klr, CuG_kli	$\operatorname{Re}ig[(C_{uG})_{kl}ig],\operatorname{Im}ig[(C_{uG})_{kl}ig]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{uG})_{ij}=(\overline{Q^i}\sigma^{\mu\nu}T_AU^j)\widetilde{H}G^{\Lambda}_{\mu\nu}$, for $i,j=1,2,3$.	
	CuW_klr, CuW_kli	$\operatorname{Re}ig[(C_{uW})_{kl}ig],\operatorname{Im}ig[(C_{uW})_{kl}ig]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{\mathbf{u}W})_{ij}=\left(\overline{Q^i}\sigma^{\mu\nu}\sigma_aU^j\right)\widetilde{H}W^a_{\mu\nu}$, for $i,j=1,2,3$.	
	CuB_klr, CuB_kli	$\operatorname{Re}ig[(C_{uB})_{kl}ig],\operatorname{Im}ig[(C_{uB})_{kl}ig]$	The real and imaginary parts of the coefficient of the operator $(\mathcal{O}_{\mathbf{u}B})_{ij}=(\overline{Q^i}\sigma^{\mu\nu}U^j)\widetilde{H}B_{\mu\nu}$, for $i,j=1,2,3$.	
-	CLL	$(C_{LL})_{1221,2112}$	The coefficient of the operator $(\mathcal{O}_{LL})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{L^k}\gamma_\mu L^lig)$, for $ijkl=1221,2112$.	
-	CLQ1	$C_{LQ}^{(1)}$	The coefficient of the operator $(\mathcal{O}_{LQ}^{(1)})_{ljkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{Q^k}\gamma_\mu Q^lig)$.	
	CLQ3	$C_{LQ}^{(3)}$	The coefficient of the operator $(\mathcal{O}_{LQ}^{(3)})_{ijkl}=ig(\overline{L^i}\gamma^\mu\sigma_aL^jig)ig(\overline{Q^k}\gamma_\mu\sigma_aQ^lig).$	
	Cee	C_{EE}	The coefficient of the operator $(\mathcal{O}_{EE})_{ijkl}=ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{E^k}\gamma_\mu E^lig).$	
	Ceu	C_{EU}	The coefficient of the operator $(\mathcal{O}_{EU})_{ijkl}=ig(\overline{E^i}\gamma^\mu E^jig)ig(\overline{U^k}\gamma_\mu U^lig)$.	
	Ced	C_{ED}	The coefficient of the operator $(\mathcal{O}_{ED})_{ijkl}=ig(\overline{E^i}\;\gamma^\mu E^jig)ig(\overline{D^k}\;\gamma_\mu D^lig)$.	
	CLe	C_{LE}	The coefficient of the operator $(\mathcal{O}_{LE})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{E^k}\gamma_\mu E^lig).$	
ϵ	CLu	C_{LU}	The coefficient of the operator $(\mathcal{O}_{LU})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{U^k}\gamma_\mu U^lig).$	
	CLd	C_{LD}	The coefficient of the operator $(\mathcal{O}_{LD})_{ijkl}=ig(\overline{L^i}\gamma^\mu L^jig)ig(\overline{D^k}\gamma_\mu D^lig).$	
	CQe	C_{QE}	The coefficient of the operator $(\mathcal{O}_{QE})_{ijkl}=ig(\overline{Q^i}\gamma^\mu Q^jig)ig(\overline{E^k}\gamma_\mu E^lig)$.	

The SMEFT in HEPfit: the Model

- Work in progress:
 - Implementation of (most) general flavour structure
 so far: some non-universality for EW, Higgs & B anomalies;
 - Implementation of full SMEFT RG running (WET running already state-of-the-art)
 - so far: some effects relevant for B anomalies;
 - Implementation of full matching on WET
 so far: some matching relevant for B anomalies;

The SMEFT in HEPfit: model-specific contributions to observables

- EWPO in α scheme
- Systematic translation to Mw scheme (in progress)
- LEPII
- Higgs signal strengths
- Dibosons (in progress)
- STXS (in progress)

The SMEFT in HEPfit: likelihoods

- Experimental likelihoods can currently be implemented as:
 - Individual measurements with "exact" likelihood (Gaussian, ...)
 - 1D or 2D measurements with "numeric" likelihood (1D or 2D Histograms)
 - Binned measurements with "exact" likelihood, including correlations
 - Multi-dimensional measurements with "exact" likelihood, including correlations

The SMEFT in HEPfit: likelihoods

- Work in progress to implement full experimental likelihoods using the DNNLikelihood. Basic idea: Coccaro et al., '19
 - Experiments publish full likelihood as a suitably trained DNN predictor
 - DNN predictor used for likelihood evaluation in HEPfit
- Allows for implementation of all correlations and non-Gaussianities
- · Any other numeric likelihood scheme can be implemented

The SMEFT in HEPfit: theory (and systematic) uncertainties

- Experimental systematic uncertainties implemented as any other uncertainty, including correlations;
- Same for "External" theoretical uncertainties, e.g. from calculation of EWPO; when distribution unspecified, try different distributions (flat, Gaussian, ...)
- "Internal" theoretical uncertainties taken into account
 - In-run, by varying e.g. α_s , matching scale, etc...
 - A posteriori, e.g. by comparing results with or without quadratic terms

The SMEFT in HEPfit: outputs

- The output of a successful MCMC run is a numerical approximation of the joint p.d.f. for model parameters and observables, represented as:
 - Averages and correlations for all parameters;
 - Averages (and correlations) for all (correlated) observables;
 - 1D and 2D histograms and highest probability regions corresponding to 1σ , 2σ , 3σ , ...;
 - Optionally, the full MCMC chains, useful for combination with more data;
 - In progress: the corresponding DNNLikelihood

CONCLUSION & OUTLOOK

- HEPfit is a public C++ code providing an ideal framework for Bayesian fits in the SMEFT
- It provides state-of-the-art calculations of EWPO and of several flavour and LHC observables; new observables are continuously added;
- The SMEFT implementation is being completed with a richer flavour structure and the inclusion of RG effects:

CONCLUSION & OUTLOOK

- Any multi-dimensional analytic likelihood can be used;
- The DNNLikelihood is being implemented both as input and as output, allowing for the full exploitation of experimental results and for efficient reuse of fit results;
- Any other numerical likelihood parameterization can be readily implemented.