
Software Performance Monitoring

Daniele Francesco Kruse

July 2010

Summary

1. Performance Monitoring

2. Performance Counters

3. Core and Nehalem PMUs – Overview

4. Nehalem : Overview of the architecture

5. μops flow in Nehalem pipeline

6. Perfmon2

7. Cycle Accounting Analysis

8. The 4-way Performance Monitoring

9. PfmCodeAnalyser : a new tool for fast monitoring

10. David Levinthal : the expert

11. Conclusions

2

Performance Monitoring

DEF : The action of collecting information related

to how an application or system performs

HOW : Obtain micro-architectural level information

from hardware performance counters

WHY : To identify bottlenecks, and possibly remove them

in order to improve application performance

3

Performance Counters

• All recent processor architectures include a

processor–specific PMU

• The Performance Monitoring Unit contains several

performance counters

• Performance counters are able to count

micro-architectural events from many hardware

sources (cpu pipeline, caches, bus, etc…)

4

Core and Nehalem PMUs - Overview

5

Intel Core Microarchitecture PMU

• 3 fixed counters
(INSTRUCTIONS_RETIRED, UNHALTED_CORE_CYCLES, UNHALTED_REFERENCE_CYCLES)

• 2 programmable counters

Intel Nehalem Microarchitecture PMU

• 3 fixed core-counters
(INSTRUCTIONS_RETIRED, UNHALTED_CORE_CYCLES, UNHALTED_REFERENCE_CYCLES)

• 4 programmable core-counters

• 1 fixed uncore-counter (UNCORE_CLOCK_CYCLES)

• 8 programmable uncore-counters

Nehalem : Overview of the architecture

6

Core 0 Core 1 Core 2 Core 3

Level 3 Cache
shared, writeback (lazy write) and inclusive (contains L1 & L2 of each core)

Integrated Memory

Controller
Link to local memory (DDR3)

Quick Path Interconnect
Link to I/O hub

(& to other processors, if present)

L1D Cache

L1I Cache

L2 Cache

TLBs

writeback

writeback

unified, writeback, not-inclusive

DTLB0 & ITLB (1st Level), STLB (unified 2nd Level)

μops flow in Nehalem pipeline

7

• We are mainly interested in UOPS_EXECUTED (dispatched)

and UOPS_RETIRED (the useful ones).

• Mispredicted UOPS_ISSUED may be eliminated before being

executed.

Instruction Fetch

& Branch Prediction Unit

Decoder

Retirement

& Writeback

Re-Order

Buffer

Resource

Allocator

Execution

Units

Reservation

Station

UOPS_ISSUED

UOPS_RETIRED

UOPS_EXECUTED

Perfmon2

• A generic API to access the PMU (libpfm)

• Developed by Stéphane Eranian

• Portable across all new processor micro-architectures

• Supports system-wide and per-thread monitoring

• Supports counting and sampling

CPU Hardware

Linux Kernel
Generic Perfmon

Architectural Perfmon

PMU

User spacePfmon Other libpfm-based Apps

libpfm

8

Cycle Accounting Analysis

Total Cycles (Application total execution time)

Issuing μops Not Issuing μops

Stalled

(no work)

Not retiring μops

(useless work)

Retiring μops

(useful work)

Store-FwdL2 miss L2 hit LCPL1 TLB miss
9

The 4-way Performance Monitoring

10

1. Overall

Analysis

2. Symbol Level

Analysis

3. Module Level

Analysis

4. Modular Symbol

Level Analysis

Overall (pfmon) Modular

Sampling

Counting

PfmCodeAnalyser : a new tool for fast monitoring

11

• Unreasonable (and useless) to run a complete analysis for

every change in code

• Often interested in only small part of code and in one

single event

• Solution: a fast, precise and light “singleton” class called

PfmCodeAnalyser

• How to use it:

#include<PfmCodeAnalyser.h>

PfmCodeAnalyser::Instance(“INSTRUCTIONS_RETIRED”).start();

//code to monitor

PfmCodeAnalyser::Instance().stop();

PfmCodeAnalyser : a new tool for fast monitoring

12

PfmCodeAnalyser::Instance("INSTRUCTIONS_RETIRED", 0, 0,

"UNHALTED_CORE_CYCLES", 0, 0,

"ARITH:CYCLES_DIV_BUSY", 0, 0,

"UOPS_RETIRED:ANY", 0, 0).start();

Event: INSTRUCTIONS_RETIRED

Total count:105000018525

Number of counts:10

Average count:10500001852.5

Event: UNHALTED_CORE_CYCLES

Total count:56009070544

Number of counts:10

Average count:5600907054.4

Event: ARITH:CYCLES_DIV_BUSY

Total count:28000202972

Number of counts:10

Average count:2800020297.2

Event: UOPS_RETIRED:ANY

Total count:138003585913

Number of counts:10

Average count:13800358591.3

David Levinthal : the expert

13

• Intel senior engineer specialized in performance

monitoring of applications

• He is going to be here from the 13th to the 30th of July

• He will give a detailed lecture about performance

monitoring on the 21st or 22nd of July in 513-1-024

• Anyone who’s interested in partecipating may contact us

for details

Conclusions

14

1. We gave a very brief introduction to Nehalem multicore

architecture and to Performance Monitoring using

hardware performance counters

2. A consistent set of events has been monitored across the

4 different analysis approaches in CMSSW, Gaudi and

Geant4 (Cycle Accounting Analysis)

3. A monitoring tool has been developed for quick

performance monitoring: PfmCodeAnalyser

4. The report and background of the work done for

CMSSW is available at http://cern.ch/dkruse/pfmon.pdf

http://cern.ch/dkruse/pfmon.pdf

Questions ?

