The challenge of adapting HEP
physics-software to run
on many-core Cpus

CERN/TH, July " 10

Vincenzo Innocente

High Performance Computing CERN PH/SET
for High Energy Physics

July 1,2010 V... -- MultiCore R&D I

MOTIVATIONS

Computing in the years Zero

<

Transistors used to increase raw-power Increase global power

10,000,000

L

1,000,000

100,000

Moore’s

10,000

1,000

100 : /
10 ,_/ /

/ ° P = e = .'- -
=] > ‘/
1 / = Trz nsistors (000) |
2 x e Cl« ck Speed (MHz)
e & Po wer (W)
@« Pe fiIClock (ILP)
o 1 | 1

1970 1975 1980 1985 1990 1995 2000 2005 2010

Consequence of the Moore’s Law

Hardware continues to follow Moore’s law

— More and more transistors available for
computation

»

»

»

»

More (and more complex) execution units:
hundreds of new instructions

Longer SIMD (Single Instruction Multiple Data)
vectors

More hardware threading

More and more cores

The ‘three walls’

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:

|.The memory wall
2.The power wall

3.The instruction level parallelism (micro-
architecture) wall

Go Parallel: many-cores!

— A turning point was reached and a new technology
emerged: multicore
» Keep frequency and consumption low

» Transistors used for multiple cores on a single chip: 2, 4, 6, 8
cores on a single chip

— Multiple hardware-threads on a single core

» simultaneous Multi-Threading (Intel Core i7 2 threads per core
(6 cores), Sun UltraSPARC T2 8 threads per core (8 cores))

— Dedicated architectures:
» GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel MIC)

» CELL
» FPGA (Reconfigurable computing)

Systems

Top 500 1993-2010

500

400

300

200

100

Operating System Share Over Time
1993-2009

06/1993
06/1994 |\

Source http://www.top500.org/

Linux
M AIX
B UNICOS
M HP Unix (HP-UX)
M IRIX
B Solaris
M CMOST
W uxp/V
M Super-UX
W OSF/1
B Unix
B CNK/SLES 9
W EWS-UX/V
HI-UX/MPP
B Others

Systems

06/1995
06/1996
06/1997
06/1998 |
06/1999
06/2000
06/2001
06/2002
06/2003
06/2004
06/2005
06/2006
06/2007
06/2008
06/2009
06/2010

TOP50

|

Processor Family Share Over Time
1993-2009

500

400

300

200

100

Power
W Intel EM64T
M Intel IA-32
B MIPS
M Sparc
M PA-RISC
M Cray
M Alpha
B AMD x86_64
M Fujitsu
W NEC
M Intel IA-64
M Intel i860
Others

06/1993
06/1994

06/1995
06/1996
06/1997
06/1998
06/1999
06/2000
06/2001
06/2002
06/2003
06/2010

TOP50

j

Top 500 in 2010

Source BBC http://news.bbc.co.uk/2/hi/technology/10187248.stm

"~ AMD

Intel

Moving to a new era

1990 2010

— Many architectures
» Evolving fast

— One architecture

» Few vendor variants

— Many OS, Compilers, libraries
» optimized to a given
architecture — Little increase in single

— Stead increase of single processor speed
processor speed

» Faster clock

— One Base Software System

— Opportunity to tune

» flexible instruction pipelines Performances of application
» Memory hierarchy software
— High level software often » Software specific to Pentium3
unable to exploit all these still optimal for latest INTEL

goodies and AMD cpus

HEP SOFTWARE IN THE
MULTICORE ERA

HEP software on multicore:

an R&D project (wp8 in CERN/PH)

The aim of the WP8 R&D project is to investigate novel software
solutions to efficiently exploit the new multi-core architecture of
modern computers in our HEP environment

Motivation:
industry trend in workstation and “medium range” computing

Activity divided in four “tracks”
» Technology Tracking & Tools
» System and core-lib optimization

» Framework Parallelization
» Algorithm Optimization and Parallelization

Coordination of activities already on-going in exps, IT, labs

The Challenge of Parallelization

I”

Exploit all 7 “paralle
for HPC

—Inside a core (climb the ILP wall)

dimensions of modern computing architecture

|. Superscalar: Fill the ports (maximize instruction per cycle)
2. Pipelined: Fill the stages (avoid stalls)
3. SIMD (vector): Fill the register width (exploit SSE, AVX)

—Inside a Box (climb the memory wall)
4. HW threads: Fill up a core (share core & caches)
5. Processor cores: Fill up a processor (share of low level resources)

6. Sockets: Fill up a box (share high level resources)

—LAN & WAN (climb the network wall)

/. Optimize scheduling and resource sharing on the Grid

HEP has been traditionally good (only) in the latter

Where are VWE?

Experimental HEP is blessed by the natural parallelism of

Event processing (applies to MC integration as well!)

— HEP code does not exploit the power of current processors
» One instruction per cycle at best
» Little or no use of vector units (SIMD)
» Poor code locality
» Abuse of the heap

— Running N jobs on N=8/12 cores still “efficient” but:

» Memory (and to less extent cpu cycles) wasted in non sharing
* “static” condition and geometry data

* |/O buffers
 Network and disk resources

» Caches (memory on CPU chip) wasted and trashed
* LI cache local per core, L2 and L3 shared
* Not locality of code and data

This situation is already bad today, will become only worse in future
many-cores architecture

Code optimization

— Ample Opportunities for improving code performance

» Measure and analyze performance of current LHC physics
application software on multi-core architectures

» Improve data and code locality (avoid trashing the caches)
» Effective use of vector/streaming instruction (SSE, future AVX)
» Exploit modern compiler’s features (does the work for you!)
— See Paolo Calafiura’s talk @ CHEPO9.
http://indico.cern.ch/contributionDisplay.py?contribld=517&sessionld=1&confld=35523
— Direct collaboration with INTEL experts established to help
analyzing and improve the code

— All this is absolutely necessary, still not sufficient to take full
benefits from the modern many-cores architectures
» NEED work on the code to have good parallelization

Instrument, measure, improve

» Experiment frameworks (CMSSVV, Gaudi, Geant4) instrumented
to capture performance counters in specific context (by module,
by G4-volume, by G4-particle)

» All experiments, G4, Root successfully reduced memory
allocation

» Use of streaming/vector instructions improved float algorithms
used in reconstruction by factor 2 (theoretical max is 4)

* Promising for double-precision in next generation INTEL/AMD cpus
» Speed-up observed when using auto-vectorization in gcc 4.5

» Work started to improve code locality (reduce instruction
cache-misses)

Event parallelism

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process!?

Event Event- Event- Event-
specific specific specific specific
data data data data
Global
data

—> multi-process vs multi-threaded
- Read-only:

Copy-on-write, Shared Libraries
—> Read-write:

Shared Memory, Sockets, Files

Multithreaded Geantd (GeantdMT)

e Event-level parallelism to simulate separate events by multiple threads
e Efficiency for future many-core CPUs

e Testing and validation on today’s 4-, 8- and 24-core nodes

e Preliminary results available based on testing on fullCMS benchl.g4

e Patch parser.c of gcc to output static and global declarations in Geant4
source code and add the “__thread” keyword

e Separate and share read-only data members : Geant4 parameterised
geomeries and replicas, Geant4 materials and particles, Geant4 physics
tables, etc.

e Custom malloc library to support thread private allocation

e Modified G4Navigator to remove unnecessary updates to G4cout and
G4cerr precision (shared variables)

“Multi-core & multi-threading: Tips on how to write “thread-safe” code in Geant4”,

Xin Dong and Gene Cooperman, 14th Geant4 Users and Collaboration Workshop Search,
http://indico.cern.ch/sessionDisplay.py?sessionId=68\&slotId=0\&confId=44566#2009-
and http://indico.cern.ch/conferenceDisplay.py?confId=44566

Experimental Results on 24-core Intel Xeon 7400 Computer

By segregating read-write data members, large read-only memory chunks
are formed. Copy-On-Write does not replicate those read-only chunks.
(Geant4dMT + COW)

e Separate Processes: No reduction for the memory footprint

e Geant4 + COW: Share geometries (no replica or parameterized geometry)
e GeantdMT + COW: Reduce the memory footprint

e Geant4MT: Reduce the memory footprint

Tested on fullCMS benchl.g4 with 24 workers and 4000 events per worker
(electromagnetics).

Implementation Total Memory | Additional | Total Memory | Runtime
on master| Memory (master
per Worker | + 24 workers)
Separate Processes 250 MB 250 MB 6 GB 4575 s
Original Geant4 + COW 250 MB 70 MB 2G MB 4571 s
GeantdMT + COW 250 MB 20 MB 730 MB 4540 s
Geant4dMT 24 threads 250 MB 20 MB 730 MB |4510 s

Performance After Output Privatization

Removal of writes to shared G4cout.precision on 4 Intel Xeon 7400 Dunnington

Number of Before Removal After Removal
Workers | # Instructions | L3 References ||L.3 Misses|| CPU Cycles | [L3 Misses| Time | Speedup
1 1,598G 87415M 293M 1945G 308M|| 6547s 1
6 1,598G 87878M 326M 2100G 302M | 1087s 6.02
12 1,598G 88713M 456M 3007G 302M| 543s 12.06
24 1,599G 88852M 51" 3706G 294M| 271s 24.16
Allocator comparison on 4 AMD Opteron 8346 HE
#WKks. ptmalloc2 ptmalloc3 hoard tcmalloc tpmalloc
Time | Speedup | Time | Speedup | Time | Speedup | Time | Speedup | Time | Speedup
1 9923s 1 110601s 1 | 10503s 119918s 1 | 10090s 1
2 4886s 2.03| 6397s 1.66 | 6316s 1.66 | 4980s 1.99 | 5024s 201
4 2377s 417 | 4108s 2.58 | 2685s 391 2564s 3R7 1 _2504s 403
8 1264s 7.85| 2345s 452 1321s 7.95] 1184s 8.37| 1248s 8.08
16 797s 1246 | 1377s 7.0 | 691s 15.20|_660s 1502 623s 16.20

Algorithm Parallelization

— Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software

» Prototypes using posix-thread, OpenMP and parallel gcclib

» On going effort in collaboration with OpenLab and Root teams to
provide basic thread-safe/multi-thread library components
* Random number generators
* Parallel minimization/fitting algorithms

* Parallel/Vector linear algebra

— Positive and interesting experience with MINUIT

» Parallelization of parameter-fitting opens the opportunity to enlarge the
region of multidimensional space used in physics analysis to essentially
the whole data sample.

20

RooFit/Minuit Parallelization

— RooFit implements the possibility to split the likelihood calculation

over different threads

» Likelihood calculation is done on sub-samples
» Then the results are collected and summed
» You gain a lot using multi-cores architecture over large data samples,

scaling almost with a factor proportional to the number of threads
— However, if you have a lot of free parameters, the bottleneck

become the minimization procedure
» Split the derivative calculation over several MPI processes

» Possible to apply an hybrid parallelization of likelihood and minimization
using a Cartesian topology (see A.L. CHEPQO9 proceeding, to be published

on ...)
* Improve the scalability for case with large number of parameters and large
samples

— Code already inside ROOT (since 5.26), based on Minuit2 (the OO
version of Minuit)

21

Parallel MINUIT

Alfio Lazzaro and Lorenzo Moneta

— Minimization of Maximum Likelihood or y? requires iterative computation of
the gradient of the NLL function

IN % 3 N N A N o j species (signals, backgrounds)
0‘\15 ~ NLL(6 +d) . NLL(6y —d) NLL = In Z n; | — Z hlz n; P n, number of events for specie j
00 fo 2d =1 im1 = : P, probability density functions (PDFs)

N number total of events to fit

— Execution time scales with number 6 free parameters and the number N of input
events in the fit

— Two strategies for the parallelization of the gradient and NLL calculation:

|. Gradient or NLL calculation on

Same work for Each process does Same work for
. each process: the calculation of a each process:
the same multi-cores node (OpenMP) Initialization of the specific sub-sample Conclusion of the
|. Distribute Gradient on different minimization step ofderivates minimization step
. — B o & e m e
nodes (MPIl) and parallelize NLL N e I | B | ——
, . | : | | | i
calculation on each multi-cores s H e [B s b F
node (pthreads): hybrid solution stat Split of Scatter-Gather of Start
Iteration parameters derivate values: new iteration

each process has
all values

22

23

Test @ INFN CNAF cluster, Bologna (ltaly)

3 variables, 600K events, 23 free parameters

PDFs per each variable: 2 Gaussians for signal, parabola for background

Sequential execution time (Intel Xeon @ 2.66GHz): ~80 minutes

37.5
35.0 Overall speed-up s
32.5 Scalability limitation due to the 350
30.0 sequential part of the code 325
27.5 30.0
25.0 27.5
25.0
g 225 s
5 200 Ezvo
9 17.5 $17s
2 a
“ 15.0 15.0
12.5 3
10.0
10.0 y
7.5 0 5.0
5.0 & e
2.5 / 0'00‘0 25 50 75 100 125 150 175 200 225 25.0 27.5 30.0 32.5 35.0 37.5
0.0 "‘ Number of Processors
00 25 5.0 75 10.0 125 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5

* Double_t RooNLLVarMPI::evaluatePartition() * MPI_Allreduce() * MPLInit() ~ other = ideal
Number of Processors

o [HxHy=1] ® [Hx=1Hy] * [Hx=2Hy] [Hx=3Hy] = ideal ROONLLVarMPI::evaluatePartition()

does the NLL calculation: excellent scalability

24

Summary

— The stagnant speed of single processors and the narrowing of the
number of OSs and computing architectures modify the strategy
to improve the performance of software applications

» Aggressive software optimization tailored to the processor in hand

» Parallelization
» Optimization of the use of “out-core” resources
— Experimental HEP is blessed by the natural parallelism of event
processing:

» Very successful evolution of “frameworks” to multi-process with read-
only shared memory

» Parallelize existing code using multi-thread proved to be “tricky”

» Exploiting this new processing model requires a new model in computing
resources allocation as well:

* The most promising solution is full node allocation

BACKUP SLIDES

25

The ‘'memory wall’

— Processor clock rates have
been increasing faster than
memory clock rates

— larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it

— Latency in memory access
is often the major
performance issue in
modern software
applications

26

32kBL1 32kBlL1 32kBL1 32kBlL1

Data Cache Inst. Cache

Data Cache Inst. Cache

Core 2 (45nm)

Main memory:
200-300 cycles

Core 2 (65nm)

0 10 20 30 40 50

Nanoseconds (lower is better)

HLu HL2 @

27

The ‘power wall’

— Processors consume more and more power the faster they go
— Not linear:
» 73% increase in power gives just |13% improvement in performance

» (downclocking a processor by about |3% gives roughly half the power
consumption)

— Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power

— Green Computing!

CPU Power Consumption 1993 - 2005

AMD and Intel

& CPU-Frequency 1993 - 2005
Wardwar AMD and Intel

guide

4000

3500
3000

2500

£
2 2
5
=
g

~—Iritel

http://www.processor-comparison.com/power.html

The ‘Architecture walls’

— Longer and fatter parallel
instruction pipelines has been a
main architectural trend in "90s

COMPLETED

|

— Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable
examples of techniques to boost
Instruction level parallelism (ILP)

IN PIPELINE

|

AITING
o

w

Y

— In practice inter-instruction data
dependencies and run-time
branching limit the amount of

achievable ILP

28

CURRENT CYCLE

3

v

4 5 CPU CYCLE

IF

ID

EX

WB

INSTRUCTIONS

»
+=-

IF

ID

EX

WB

IF

ID

EX | WB

IF

ID | EX | WB

IF | ID | EX || WB

IF

ID

EX

WB

IF || ID || EX || WB

FETCH NEXT INSTRUCTION

DISPATCH INSTRUCTION
TO FUNCTIONAL UNIT
EXECUTE INSTRUCTION
IN FUNCTIONAL UNIT

WRITE RESULT TO REGISTER

Core 2 execution ports

— Intel’s Core
microarchitecture
can handle:

» Four instructions in
parallel:

» Every cycle

» Data width of 128
bits

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Integer Integer
Alu Alu
I | |
Int. SIMD Int. SIMD
Alu Multiply
I I
x87 FP
Multipl
I 2V FP
Add
SSE FP
Multiply
I 1
DIV FSS Move
SQRT & Logic
| |
FSS Move
& Logic QW Shuffle
QW Shuffle

Integer
Load

FP

Load

Store
Address

Store
Data

Integer
Alu

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Jump Exec

Unit

29

Issue ports in the Core 2 micro-architecture
(from Intel Manual No. 248966-016)

Bringing |IA Programmability and Parallelism
to High Performance & Throughput
Computing

—

— Highly parallel, 1A programmable
architecture in development

Ease of scaling for software
ecosystem

Array of enhanced IA cores

New Cache Architecture

New Vector Processing Unit
Scalable to TFLOPS performance

F No-HT O Yes-HT
300 :

Parallel Job Performance
with Hyper-Threading

225

e The Computer:
+ coors.Ibl.gov
+ Dual-Xeon X5550@2.67G
+ 8 Cores in total, 24GB Mem
+ Hyper Threading

150

® The obs: 7

+ ATLAS Fast Reconstruction
+ 50 Events per job
+ Each job takes ~2 min.

Number of Physical Cores=8

Total Throughput On the Node (Events per minute)

0 5 10 I5 20
o Tests: Number of Parallel Jobs
+ For each Nin (2,4,6,8, 10, 12, 14, 16, 18,20), run at the same time N parallel jobs, and measure the
time each job takes. Repeat 10 times for more statistics for each N.
+ The throughput is the total number of events the Computer can process when running N parallel
jobs.
+ This is to simulate the scenario of batch node in a cluster.

® Result:
+ With Hyper threading, one can stuff more jobs into the same node to achieve higher throughput
+ Meaning: if our clusters have HT-enabled CPUs, we can let the scheduler over commit jobs within
the limit of memory. For this case, we can process 25% more events.

Wednesday, February 24, 2010

GPUs!?

»

»

»

»

»

»

ALU ALU
Control

CPU
— A lot of interest is growing around GPUs

Particular interesting is the case of NVIDIA cards using CUDA for
programming

&

Impressive performance (even |100x faster than a normal CPU), but high
energy consumption (up to 200 Watts)

A lot of project ongoing in HPC community. More and more example in HEP
(wait for tomorrow talk...)

Great performance using single floating point precision (IEEE 754 standard): up
to | TFLOPS (w.r.t 10 GFLOPS of a standard CPU)

Need to rewrite most of the code to benefit of this massive parallelism
(thread parallelism), especially memory usage: it can be not straightforward...

The situation can improve with OpenCL (Tim Mattson visiting CERN next
Monday) and Intel Larrabee architecture (standard x86)

32

