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Moore’s law 	



Transistors used to increase raw-power	

 Increase global power	





Hardware continues to follow Moore’s law	


–  More and more transistors available for 

computation	


»  More (and more complex) execution units: 

hundreds of new instructions	



»  Longer SIMD (Single Instruction Multiple Data) 
vectors 	



»  More hardware threading	


»  More and more cores	
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While hardware continued to follow Moore’s 
law, the perceived exponential grow of the 
“effective” computing power faded away in 
hitting three “walls”:	



1. The memory wall	


2. The power wall	


3. The instruction level parallelism (micro-
architecture) wall	
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– A turning point was reached and a new technology 
emerged: multicore	



»  Keep frequency and consumption low	



»  Transistors used for multiple cores on a single chip: 2, 4, 6, 8 
cores on a single chip	



– Multiple hardware-threads on a single core	


»  simultaneous Multi-Threading (Intel Core i7 2 threads per core 

(6 cores), Sun UltraSPARC T2 8 threads per core (8 cores))	



– Dedicated architectures:	


»  GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel MIC)	



»  CELL	


»  FPGA (Reconfigurable computing)	
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Top 500 1993-2010	
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Source http://www.top500.org/	





Top 500 in 2010	
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Source BBC http://news.bbc.co.uk/2/hi/technology/10187248.stm	





Moving to a new era	



1990	


–  Many architectures	



»  Evolving fast	



–  Many OS, Compilers, libraries	


»  optimized to a given 

architecture	



–  Stead increase of single 
processor speed	



»  Faster clock	


»  flexible instruction pipelines	


»  Memory hierarchy	



–  High level software often 
unable to exploit all these 
goodies 	



2010	



–  One architecture	


»  Few vendor variants	



–  One Base Software System	


–  Little increase in single 

processor speed	



–  Opportunity to tune 
performances of application 
software	



»  Software specific to Pentium3 
still optimal for latest INTEL 
and AMD cpus	
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HEP SOFTWARE IN THE 
MULTICORE ERA	
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HEP software on multicore: ���
an R&D project (WP8 in CERN/PH)	


The aim of  the WP8 R&D project  is to investigate novel software 

solutions to efficiently exploit the new multi-core architecture of 
modern computers in our HEP environment	



Motivation: 	



	

industry trend in workstation and “medium range” computing	



Activity divided in four “tracks”	


»  Technology Tracking & Tools	



»  System and core-lib optimization	



»  Framework Parallelization	


»  Algorithm Optimization and Parallelization	



Coordination of activities already on-going in exps, IT, labs 	
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Exploit all 7 “parallel” dimensions of modern computing architecture 
for HPC	



– Inside a core (climb the ILP wall)	


1.  Superscalar: Fill the ports (maximize instruction per cycle)	



2.  Pipelined: Fill the stages (avoid stalls)	



3.  SIMD (vector): Fill the register width  (exploit SSE, AVX)	



– Inside a Box (climb the memory wall)	


4.  HW threads: Fill up a core (share core & caches)	



5.  Processor cores: Fill up a processor (share of low level resources)	



6.  Sockets: Fill up a box (share high level resources)	



– LAN & WAN (climb the network wall)	


7.  Optimize scheduling and resource sharing on the Grid	



HEP has been traditionally good (only) in the latter	
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Where are WE?	


Experimental HEP is blessed by the natural parallelism of 

Event processing     (applies to MC integration as well!)	



–  HEP code does not exploit the power of current processors	


»  One instruction per cycle at best	


»  Little or no use of vector units (SIMD)	


»  Poor code locality 	


»  Abuse of the heap	



–  Running N jobs on N=8/12 cores still “efficient” but:	


»  Memory (and to less extent cpu cycles) wasted in non sharing	



•  “static” condition and geometry data	


•  I/O buffers	


•  Network and disk resources	



»  Caches (memory on CPU chip) wasted and trashed	


•  L1 cache local per core, L2 and L3 shared	


•  Not locality of code and data	



This situation is already bad today, will become only worse in future 
many-cores architecture	
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Instrument, measure, improve	


 Experiment frameworks (CMSSW, Gaudi, Geant4) instrumented 

to capture performance counters in specific context (by module, 
by G4-volume, by G4-particle)	



 All experiments, G4, Root successfully reduced memory 
allocation	



 Use of streaming/vector instructions improved float algorithms 
used in reconstruction by factor 2 (theoretical max is 4)	


  Promising for double-precision in next generation INTEL/AMD cpus	



 Speed-up observed when using auto-vectorization in gcc 4.5	


 Work started to improve code locality (reduce instruction 

cache-misses) 	
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Opportunity: Reconstruction Memory-Footprint shows large condition data	



How to share common data between different process?	



  multi-process vs multi-threaded	



  Read-only:	



 Copy-on-write, Shared Libraries	



  Read-write: 	



Shared Memory, Sockets, Files	
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–  Ultimate performance gain will come from parallelizing 
algorithms used in current LHC physics application 
software	



»  Prototypes using posix-thread, OpenMP and parallel gcclib 
»  On going effort in collaboration with OpenLab and Root teams to 

provide basic thread-safe/multi-thread library components 
•  Random number generators	


•  Parallel minimization/fitting algorithms	


•  Parallel/Vector linear algebra	



–  Positive and interesting experience with MINUIT	


»  Parallelization of parameter-fitting opens the opportunity to enlarge the 

region of multidimensional space used in physics analysis to essentially 
the whole data sample. 	





RooFit/Minuit Parallelization	


–  RooFit implements the possibility to split the likelihood calculation 

over different threads	


»  Likelihood calculation is done on sub-samples	


»  Then the results are collected and summed	


»  You gain a lot using multi-cores architecture over large data samples, 

scaling almost with a factor proportional to the number of threads	



–  However, if you have a lot of free parameters, the bottleneck 
become the minimization procedure	


»  Split the derivative calculation over several MPI processes	


»  Possible to apply an hybrid parallelization of likelihood and minimization 

using a Cartesian topology (see A.L. CHEP09 proceeding, to be published 
on …)	



•  Improve the scalability for case with large number of parameters and large 
samples	



–  Code already inside ROOT (since 5.26), based on Minuit2 (the OO 
version of Minuit)	
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–  Minimization of Maximum Likelihood or χ2 requires iterative computation of 
the gradient of the NLL function	



–  Execution time scales with number θ free parameters and the number N of input 
events in the fit	



–  Two strategies for the parallelization of the gradient and NLL calculation:	



1.  Gradient or NLL calculation on 	



	

the same multi-cores node (OpenMP)	



1.  Distribute Gradient on different 	



	

nodes (MPI) and parallelize NLL 	



	

calculation on each multi-cores 	



	

node (pthreads): hybrid solution	



Alfio Lazzaro and Lorenzo Moneta	
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Test @ INFN CNAF cluster, Bologna (Italy) 

3 variables, 600K events, 23 free parameters 
PDFs per each variable: 2 Gaussians for signal, parabola for background 
Sequential execution time (Intel Xeon @ 2.66GHz): ~80 minutes 

Overall speed-up	



Scalability limitation due to the 
sequential part of the code	



RooNLLVarMPI::evaluatePartition() 
does the NLL calculation: excellent scalability 



Summary	


–  The stagnant speed of single processors and the narrowing of the 

number of OSs and computing architectures modify the strategy 
to improve the performance of software applications	



»  Aggressive software optimization tailored to the processor in hand	



»  Parallelization	



»  Optimization of the use of “out-core” resources	



–  Experimental HEP is blessed by the natural parallelism of event 
processing:	



»  Very successful evolution of “frameworks” to multi-process with read-
only shared memory	



»  Parallelize existing code using multi-thread proved to be “tricky”	



»  Exploiting this new processing model requires a new model in computing 
resources allocation as well:	



•  The most promising solution is full node allocation  	
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BACKUP SLIDES	
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– Processor clock rates have 
been increasing faster than 
memory clock rates	



–  larger and faster “on chip” 
cache memories help 
alleviate the problem but 
does not solve it	



– Latency in memory access 
is often the major 
performance issue in 
modern software 
applications	
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Core 1 Core n  … 

Main memory:	


200-300 cycles	





–  Processors consume more and more power the faster they go	


–  Not linear: 	



»  73% increase in power gives just 13% improvement in performance	


»  (downclocking a processor by about 13% gives roughly half the power 

consumption)	



–  Many computing center are today limited by the total electrical power 
installed and the corresponding cooling/extraction power	



–  Green Computing!	



http://www.processor-comparison.com/power.html	
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–  Longer and fatter parallel 
instruction pipelines has been a 
main architectural trend in `90s	



–  Hardware branch prediction, 
hardware speculative execution, 
instruction re-ordering (a.k.a. 
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable 
examples of techniques to boost 
Instruction level parallelism (ILP) 	



–  In practice inter-instruction data 
dependencies and run-time 
branching limit the amount of 
achievable ILP	
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Core 2 execution ports	



–  Intel’s Core 
microarchitecture 
can handle:	



»  Four instructions in 
parallel:	



»  Every cycle	



»  Data width of 128 
bits	
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Issue ports in the Core 2 micro-architecture���
(from Intel Manual No. 248966-016)	



Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 

Integer 
Alu 

Int. SIMD 
Alu 

x87 FP 
Multiply 

SSE FP 
Multiply 

FSS Move 
& Logic 

QW Shuffle 

Integer 
Alu 

Int. SIMD 
Multiply 

FP 
Add 

FSS Move 
& Logic 

QW Shuffle 

Integer 
Alu 

Int. SIMD 
Alu 

FSS Move 
& Logic 

QW Shuffle 

Alu = Arithmetic, Logical Unit 
FSS = FP/SIMD/SSE2 
QW = Quadword (64-bits) 

Integer 
Load 

Store 
 Address 

Store 
Data 

FP 
Load 

Jump Exec 
Unit 

DIV 
SQRT 



Bringing IA Programmability and Parallelism���
to High Performance & Throughput 
Computing	



–  Highly parallel, IA programmable 
architecture in development 

–  Ease of scaling for software 
ecosystem 

–  Array of enhanced IA cores 
–  New Cache Architecture 
–  New Vector Processing Unit 
–  Scalable to TFLOPS performance 

Cache 

Special 
Function 

& I/O 

… IA++ 

… 

… 
… … … 

… IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

IA++ 

Future options subject to change without notice. 
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–  A lot of interest is growing around GPUs	


»  Particular interesting is the case of NVIDIA cards using CUDA for 

programming	


»  Impressive performance (even 100x faster than a normal CPU), but high 

energy consumption (up to 200 Watts)	


»  A lot of project ongoing in HPC community. More and more example in HEP 

(wait for tomorrow talk…)	


»  Great performance using single floating point precision (IEEE 754 standard): up 

to 1 TFLOPS (w.r.t 10 GFLOPS of a standard CPU)	


»  Need to rewrite most of the code to benefit of this massive parallelism 

(thread parallelism), especially memory usage: it can be not straightforward…	


»  The situation can improve with OpenCL (Tim Mattson visiting CERN next 

Monday) and Intel Larrabee architecture (standard x86)	
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