
July 1, 2010	

 V.I. -- MultiCore R&D	

 1	

The challenge of adapting HEP ���
physics-software to run ���

on many-core cpus���

CERN/TH, July `10 ���

Vincenzo Innocente	

CERN PH/SFT	

High Performance Computing ���
for High Energy Physics 	

MOTIVATIONS	

2	

3	

Moore’s law 	

Transistors used to increase raw-power	

 Increase global power	

Hardware continues to follow Moore’s law	

–  More and more transistors available for

computation	

»  More (and more complex) execution units:

hundreds of new instructions	

»  Longer SIMD (Single Instruction Multiple Data)
vectors 	

»  More hardware threading	

»  More and more cores	

4	

While hardware continued to follow Moore’s
law, the perceived exponential grow of the
“effective” computing power faded away in
hitting three “walls”:	

1. The memory wall	

2. The power wall	

3. The instruction level parallelism (micro-
architecture) wall	

5	

– A turning point was reached and a new technology
emerged: multicore	

»  Keep frequency and consumption low	

»  Transistors used for multiple cores on a single chip: 2, 4, 6, 8
cores on a single chip	

– Multiple hardware-threads on a single core	

»  simultaneous Multi-Threading (Intel Core i7 2 threads per core

(6 cores), Sun UltraSPARC T2 8 threads per core (8 cores))	

– Dedicated architectures:	

»  GPGPU: up to 240 threads (NVIDIA, ATI-AMD, Intel MIC)	

»  CELL	

»  FPGA (Reconfigurable computing)	

6	

Top 500 1993-2010	

7	

Source http://www.top500.org/	

Top 500 in 2010	

8	

Source BBC http://news.bbc.co.uk/2/hi/technology/10187248.stm	

Moving to a new era	

1990	

–  Many architectures	

»  Evolving fast	

–  Many OS, Compilers, libraries	

»  optimized to a given

architecture	

–  Stead increase of single
processor speed	

»  Faster clock	

»  flexible instruction pipelines	

»  Memory hierarchy	

–  High level software often
unable to exploit all these
goodies 	

2010	

–  One architecture	

»  Few vendor variants	

–  One Base Software System	

–  Little increase in single

processor speed	

–  Opportunity to tune
performances of application
software	

»  Software specific to Pentium3
still optimal for latest INTEL
and AMD cpus	

9	

HEP SOFTWARE IN THE
MULTICORE ERA	

10	

HEP software on multicore: ���
an R&D project (WP8 in CERN/PH)	

The aim of the WP8 R&D project is to investigate novel software

solutions to efficiently exploit the new multi-core architecture of
modern computers in our HEP environment	

Motivation: 	

	

industry trend in workstation and “medium range” computing	

Activity divided in four “tracks”	

»  Technology Tracking & Tools	

»  System and core-lib optimization	

»  Framework Parallelization	

»  Algorithm Optimization and Parallelization	

Coordination of activities already on-going in exps, IT, labs 	

11	

12	

Exploit all 7 “parallel” dimensions of modern computing architecture
for HPC	

– Inside a core (climb the ILP wall)	

1.  Superscalar: Fill the ports (maximize instruction per cycle)	

2.  Pipelined: Fill the stages (avoid stalls)	

3.  SIMD (vector): Fill the register width (exploit SSE, AVX)	

– Inside a Box (climb the memory wall)	

4.  HW threads: Fill up a core (share core & caches)	

5.  Processor cores: Fill up a processor (share of low level resources)	

6.  Sockets: Fill up a box (share high level resources)	

– LAN & WAN (climb the network wall)	

7.  Optimize scheduling and resource sharing on the Grid	

HEP has been traditionally good (only) in the latter	

13	

Where are WE?	

Experimental HEP is blessed by the natural parallelism of

Event processing (applies to MC integration as well!)	

–  HEP code does not exploit the power of current processors	

»  One instruction per cycle at best	

»  Little or no use of vector units (SIMD)	

»  Poor code locality 	

»  Abuse of the heap	

–  Running N jobs on N=8/12 cores still “efficient” but:	

»  Memory (and to less extent cpu cycles) wasted in non sharing	

•  “static” condition and geometry data	

•  I/O buffers	

•  Network and disk resources	

»  Caches (memory on CPU chip) wasted and trashed	

•  L1 cache local per core, L2 and L3 shared	

•  Not locality of code and data	

This situation is already bad today, will become only worse in future
many-cores architecture	

14	

Instrument, measure, improve	

 Experiment frameworks (CMSSW, Gaudi, Geant4) instrumented

to capture performance counters in specific context (by module,
by G4-volume, by G4-particle)	

 All experiments, G4, Root successfully reduced memory
allocation	

 Use of streaming/vector instructions improved float algorithms
used in reconstruction by factor 2 (theoretical max is 4)	

  Promising for double-precision in next generation INTEL/AMD cpus	

 Speed-up observed when using auto-vectorization in gcc 4.5	

 Work started to improve code locality (reduce instruction

cache-misses) 	

15	

Opportunity: Reconstruction Memory-Footprint shows large condition data	

How to share common data between different process?	

  multi-process vs multi-threaded	

  Read-only:	

 Copy-on-write, Shared Libraries	

  Read-write: 	

Shared Memory, Sockets, Files	

16	

17	

18	

19	

20	

–  Ultimate performance gain will come from parallelizing
algorithms used in current LHC physics application
software	

»  Prototypes using posix-thread, OpenMP and parallel gcclib
»  On going effort in collaboration with OpenLab and Root teams to

provide basic thread-safe/multi-thread library components
•  Random number generators	

•  Parallel minimization/fitting algorithms	

•  Parallel/Vector linear algebra	

–  Positive and interesting experience with MINUIT	

»  Parallelization of parameter-fitting opens the opportunity to enlarge the

region of multidimensional space used in physics analysis to essentially
the whole data sample. 	

RooFit/Minuit Parallelization	

–  RooFit implements the possibility to split the likelihood calculation

over different threads	

»  Likelihood calculation is done on sub-samples	

»  Then the results are collected and summed	

»  You gain a lot using multi-cores architecture over large data samples,

scaling almost with a factor proportional to the number of threads	

–  However, if you have a lot of free parameters, the bottleneck
become the minimization procedure	

»  Split the derivative calculation over several MPI processes	

»  Possible to apply an hybrid parallelization of likelihood and minimization

using a Cartesian topology (see A.L. CHEP09 proceeding, to be published
on …)	

•  Improve the scalability for case with large number of parameters and large
samples	

–  Code already inside ROOT (since 5.26), based on Minuit2 (the OO
version of Minuit)	

21	

22	

–  Minimization of Maximum Likelihood or χ2 requires iterative computation of
the gradient of the NLL function	

–  Execution time scales with number θ free parameters and the number N of input
events in the fit	

–  Two strategies for the parallelization of the gradient and NLL calculation:	

1.  Gradient or NLL calculation on 	

	

the same multi-cores node (OpenMP)	

1.  Distribute Gradient on different 	

	

nodes (MPI) and parallelize NLL 	

	

calculation on each multi-cores 	

	

node (pthreads): hybrid solution	

Alfio Lazzaro and Lorenzo Moneta	

23	

Test @ INFN CNAF cluster, Bologna (Italy)

3 variables, 600K events, 23 free parameters
PDFs per each variable: 2 Gaussians for signal, parabola for background
Sequential execution time (Intel Xeon @ 2.66GHz): ~80 minutes

Overall speed-up	

Scalability limitation due to the
sequential part of the code	

RooNLLVarMPI::evaluatePartition()
does the NLL calculation: excellent scalability

Summary	

–  The stagnant speed of single processors and the narrowing of the

number of OSs and computing architectures modify the strategy
to improve the performance of software applications	

»  Aggressive software optimization tailored to the processor in hand	

»  Parallelization	

»  Optimization of the use of “out-core” resources	

–  Experimental HEP is blessed by the natural parallelism of event
processing:	

»  Very successful evolution of “frameworks” to multi-process with read-
only shared memory	

»  Parallelize existing code using multi-thread proved to be “tricky”	

»  Exploiting this new processing model requires a new model in computing
resources allocation as well:	

•  The most promising solution is full node allocation 	

24	

BACKUP SLIDES	

25	

– Processor clock rates have
been increasing faster than
memory clock rates	

–  larger and faster “on chip”
cache memories help
alleviate the problem but
does not solve it	

– Latency in memory access
is often the major
performance issue in
modern software
applications	

26	

Core 1 Core n …

Main memory:	

200-300 cycles	

–  Processors consume more and more power the faster they go	

–  Not linear: 	

»  73% increase in power gives just 13% improvement in performance	

»  (downclocking a processor by about 13% gives roughly half the power

consumption)	

–  Many computing center are today limited by the total electrical power
installed and the corresponding cooling/extraction power	

–  Green Computing!	

http://www.processor-comparison.com/power.html	

27	

–  Longer and fatter parallel
instruction pipelines has been a
main architectural trend in `90s	

–  Hardware branch prediction,
hardware speculative execution,
instruction re-ordering (a.k.a.
out-of-order execution), just-in-
time compilation, hardware-
threading are some notable
examples of techniques to boost
Instruction level parallelism (ILP) 	

–  In practice inter-instruction data
dependencies and run-time
branching limit the amount of
achievable ILP	

28	

Core 2 execution ports	

–  Intel’s Core
microarchitecture
can handle:	

»  Four instructions in
parallel:	

»  Every cycle	

»  Data width of 128
bits	

29	

Issue ports in the Core 2 micro-architecture���
(from Intel Manual No. 248966-016)	

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FP
Add

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

QW Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
 Address

Store
Data

FP
Load

Jump Exec
Unit

DIV
SQRT

Bringing IA Programmability and Parallelism���
to High Performance & Throughput
Computing	

–  Highly parallel, IA programmable
architecture in development

–  Ease of scaling for software
ecosystem

–  Array of enhanced IA cores
–  New Cache Architecture
–  New Vector Processing Unit
–  Scalable to TFLOPS performance

Cache

Special
Function

& I/O

… IA++

…

…
… … …

… IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

IA++

Future options subject to change without notice.

31	

–  A lot of interest is growing around GPUs	

»  Particular interesting is the case of NVIDIA cards using CUDA for

programming	

»  Impressive performance (even 100x faster than a normal CPU), but high

energy consumption (up to 200 Watts)	

»  A lot of project ongoing in HPC community. More and more example in HEP

(wait for tomorrow talk…)	

»  Great performance using single floating point precision (IEEE 754 standard): up

to 1 TFLOPS (w.r.t 10 GFLOPS of a standard CPU)	

»  Need to rewrite most of the code to benefit of this massive parallelism

(thread parallelism), especially memory usage: it can be not straightforward…	

»  The situation can improve with OpenCL (Tim Mattson visiting CERN next

Monday) and Intel Larrabee architecture (standard x86)	

32	

