
Graphics processing units (GPUs) for LO matrix-element evaluations

[Talk @ CERN theory institute HO10]

Jan Winter ^a

Fermilab –

- Introduction
- Hardware structure and GPU memory
- Monte Carlo for LO leading-colour n-gluon MEs
- Results timing, cross sections, distributions

a In collaboration with: W. Giele and G. Stavenga

Some words in the beginning

- Fast tree-level event generators are needed for multi-particle final states.
 - ⇒ evaluation time for event generation is crucial as one needs to average over many events to obtain good statistics for cross sections and observables
 - \Rightarrow not only @ LO, also @ NLO to calculate real-emission corrections ...
 - ⇒ ... and tree-level matrix elements when using generalized unitarity-cut methods to determine the virtual corrections
- Throw large computer farms/grids at the problem.
 - o expensive; require certain infrastructure and maintenance
 - What if problem could be handled on a single, affordable PC?
- Graphical Processor Units (GPUs) in addition to CPUs give an option. Explore capabilities.
 - ⇒ first applications within the framework of Helas ME generator [HAGIWARA, KANZAKI, OKAMURA, RAINWATER, STELZER, ARXIV:0909.5257, ARXIV:0908.4403]
 - ⇒ can tame but not overcome factorial scaling of Feynman diagrammatic approach
- ullet Define the project: LO LC n-gluon scattering cross sections. \Rightarrow Tools needed ...
 - O unit-weight phase-space generator ... implementation of RAMBO [KLEISS, STIRLING, ELLIS]
 - o strong-coupling evaluation, PDFs using LHAPDF and observables
 - $\circ gg \rightarrow 2, \ldots, 10~g$ MEs \ldots Berends-Giele ordered recursions, use threading to tame n^4 -scaling

Jan Winter CERN, July 2, 2010 – p.2

GPU hardware and programming principles

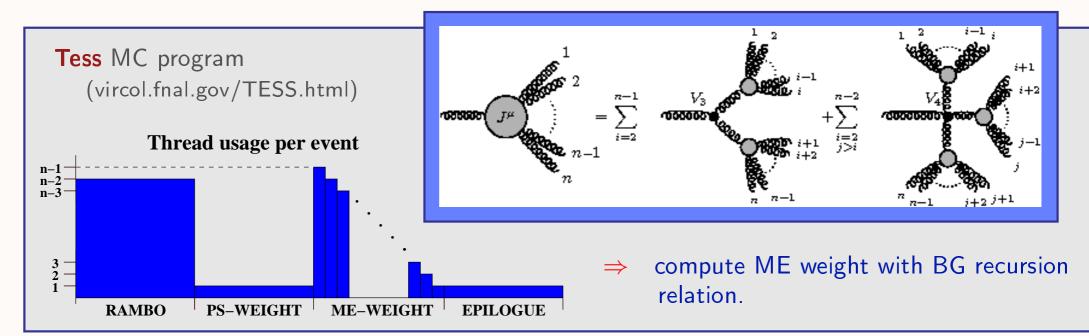
[GIELE, STAVENGA, WINTER, ARXIV:1002.3446]

- The C1060 Nvidia Tesla GPU is a plug-in card for your desktop. GPU has its own memory.
- ightharpoonup The Tesla chip is designed for numerical applications and programmable in C/limited C++.
- The chip has 30 multi-processors (MPs), each comes with 1024 processors (threads). Each thread has an unique number (for I/O etc.). Threads essentially execute same processor instructions over different data (... can skip ahead and wait for others to catch up).
- Desirable: trivial parallelization (Monte Carlo algorithms: 1 event per thread). So, in principle we can run 30720 MC generators in parallel, each running N events ... a speed-up of 30000!!
- Approach limited by amount of available fast-access memory.
 - off-chip slow-access memory: 4 Gb; use for I/O only ... transfer to and bin results on CPU
 - on-chip fast-access memory: only kbs; registers and shared memory
 - ⇒ 16384 32-bit registers per MP; once assigned only seen by specific thread; temporary storage for function evaluations
 - \Rightarrow 16384 bytes shared memory per MP; accessible to all threads

Jan Winter CERN, July 2, 2010 – p.3

Memory layout

[GIELE, STAVENGA, WINTER, ARXIV:1002.3446]

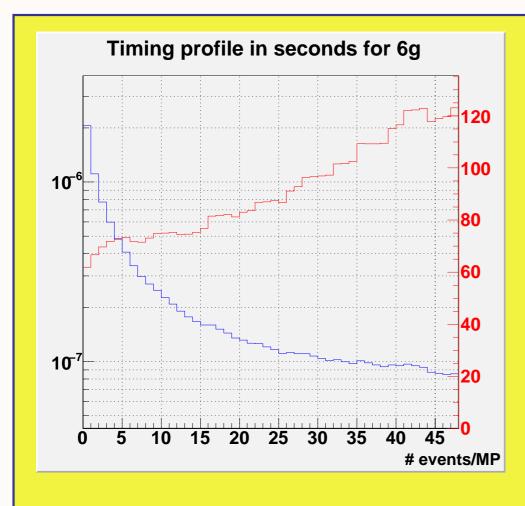

- The n-gluon recursion relation needs n momenta and n(n-1)/2 currents for a total of n(n+1)/2 single precision 4-vectors.
 - Recursion relations are very suitable for GPU (memory efficient & algorithmically simple).
- We need $(4 \cdot 4) \ n(n+1)/2$ bytes of fast accessible memory per event.
- This means 16384/(8 n(n+1)) events per MP.
- One constraint though: implementation needs 35 registers per thread, i.e. 16384/35=468 threads are useable per MP.

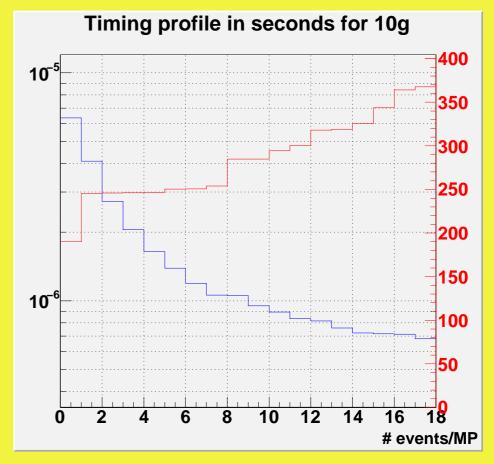
n	4	5	6	7	8	9	10	11	12
events per MP	102	68	48	36	28	22	18	15	13
avail. threads / evt	10	15	21	28	36	45	55	66	78
useable threads / evt	4	6	9	13	16	21	26	31	36

 \Rightarrow used threads per event = n-1.

Processing events

[GIELE, STAVENGA, WINTER, ARXIV:1002.3446]




- Initialization phase: not shown.
- ightharpoonup Rambo phase: n-2 threads to construct outgoing momenta.
- Phase-space weight: off-chip texture memory to store $\alpha_s(\mu)$ 1D and PDF $f_g(x,\mu)$ 2D grids.
 - ⇒ hardware performs linear interpolation between grid points for non-integer values
- ullet ME weight: computed in n-1 steps instead of n(n-1)/2.
 - \Rightarrow reduces computational effort from $\mathcal{O}(n^4)$ to $\mathcal{O}(n^3)$ complexity
 - ⇒ avoid complex multiplications; choose polarization vecs such that one has real-valued currents
 - ⇒ leading colour to avoid colour sum; use symmetry of FS (gluons only) to remove permutation sum over orderings

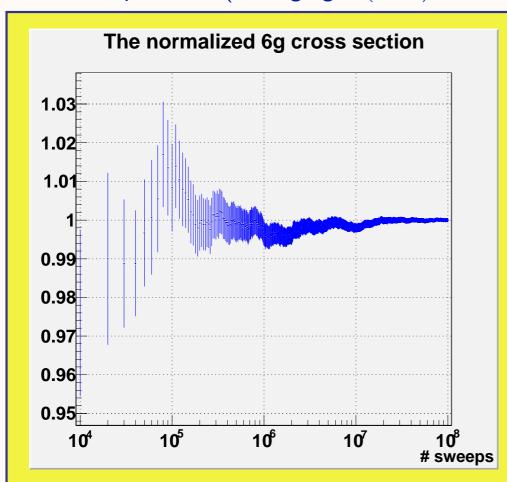
Computation times

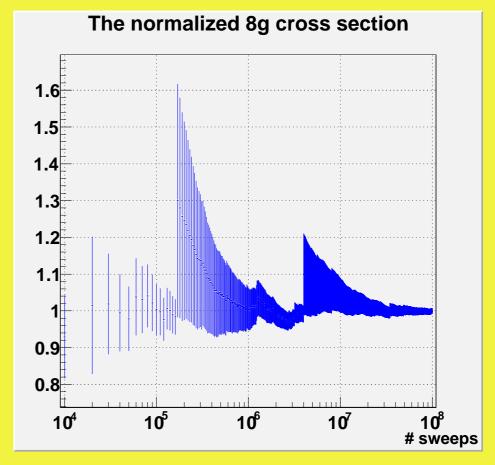
[GIELE, STAVENGA, WINTER, ARXIV:1002.3446]

- ullet Red curves: total GPU time in seconds to evaluate 10^6 sweeps (30×events/MP).
- Sweep time should be independent of #evts/MP, but queuing effects due to substantial amount of special-function calls.
- \bigcirc Blue curves: evaluation time per event = GPU time / total #evts.

 \Rightarrow best performance if max #evts available per MP.

- Compare evaluation time per event on GPU with that of running the same algorithm on CPU [AMD Phenom(tm) II X4 940 (3 GHz)]. $P_n(m) = [(n-1)/n] \sqrt[m]{T_n/T_{n-1}}$
 - Speed-ups occur because events are evaluated in parallel.

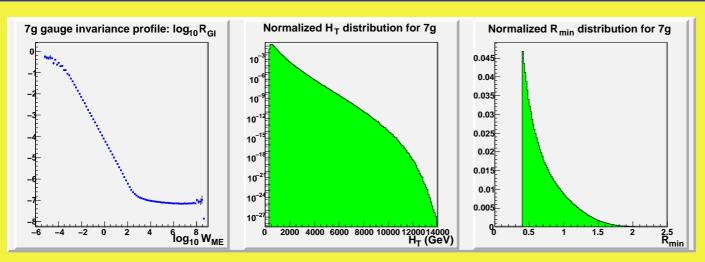

n	$T_n^{ m GPU}$ (seconds)	$P_n(3)$	$T_n^{ m CPU}$ (seconds)	$P_n(4)$	G_n
4	2.075 10-8		0.750 10-6		004
4	2.975×10^{-8}		8.753×10^{-6}		294
5	4.438×10^{-8}	0.91	1.247×10^{-5}	0.87	281
6	8.551×10^{-8}	1.03	1.966×10^{-5}	0.93	230
7	2.304×10^{-7}	1.19	3.047×10^{-5}	0.96	132
8	3.546×10^{-7}	1.01	4.736×10^{-5}	0.98	133
9	4.274×10^{-7}	0.94	7.263×10^{-5}	0.99	170
10	6.817×10^{-7}	1.05	1.044×10^{-4}	0.99	153
11	9.750×10^{-7}	1.02	1.529×10^{-4}	1.00	157
12	1.356×10^{-6}	1.02	2.129×10^{-4}	1.00	158


 \Rightarrow Gain.

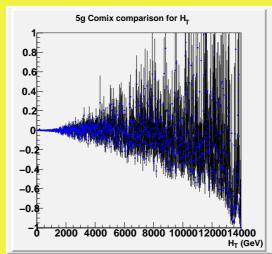
LO LC multi-gluon cross sections

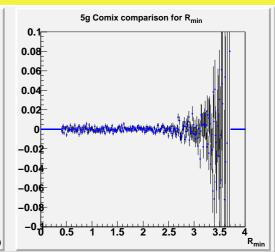
[GIELE, STAVENGA, WINTER, ARXIV:1002.3446]

- Convergence of cross section normalized to best xsec estimate.
- ho 14 TeV LHC, cteq6l1 PDFs, $\mu_{
 m F}=\mu_{
 m R}=M_Z$, $p_T^{
 m jet}>20$ GeV, $|\eta^{
 m jet}|<2.5$ and $\Delta R_{
 m jet-jet}>0.4$.
- Subtleties: random-number generator cycle > total #evts; Kahan summation to avoid loss of precision (averaging $\mathcal{O}(10^{11})$ numbers).



 \Rightarrow flat phase-space integration may under-sample regions of large weights o peaks.


Distributions


[GIELE, STAVENGA, WINTER, ARXIV:1002.3446]

- **Solution** Observables: H_T and minimum R-separation $R_{\min} = \min\{R_{ij}\}$ normalized to total xsec.
- $\begin{tabular}{ll} $ & $ 14$ TeV LHC, cteq6l1 PDFs, $\mu_{\rm F} = \mu_{\rm R} = H_T({\rm upper}), M_Z({\rm lower}), $p_T^{\it jet} > 60$ GeV, $|\eta^{\it jet}| < 2.0$ and $\Delta R_{\it jet-jet} > 0.4$. }$
- **Solution** upper: example for $gg \to 5g$; lower: $gg \to 3g$ compared to Comix. [Gleisberg, Höche]

Comix uses importance sampling, i.e. tail less populated, i.e. larger uncertainties ${\bf 0}$ large H_T .

Summary

- We obtained encouraging results in our first exploration of the potential of using multi-threaded GPU based workstations for Monte Carlo programming.
- ightharpoonup Testbed chosen: leading-order leading colour n-gluon scattering.
 - ⇒ **Tess** Monte Carlo program.
- Wrt the CPU based implementation, we found speed-ups ranging from $\mathcal{O}(300)$ and $\mathcal{O}(150)$ for 4-gluon and 12-gluon scattering, respectively.
- Outlook: @ LO include quarks, vector bosons, subleading colour contributions, replace Rambo by Sarge. [Van Hameren, Papadopoulos]
 - \Rightarrow application to NLO
- GPU chips are still evolving rapidly ... next generation, Fermi chip (Fall 2010).

Jan Winter CERN, July 2, 2010 – p.10