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Positivity bounds

@ EFTs describe the IR behavior of some "UV completion”, by integrating out
its heavy dofs.

@ Buf in a bottom-up view: not all EFTs have a UV completion!

@ Using axiomatic principles of QFT, including causality, unitarity, Lorentz
symmetry, etc., bounds can be placed on (the signs of) (combinations of)

Wilson coefficients.

o 2-to-2 amplitude [EEVECIERIEN R Ccos® + co 187t + cas* + -+ RN
@ C2>0; orin SMEFT: C®> 0
@ More bounds on higher-s dependence. Talk by F. Riva.

@ Other recent developments



® We are interested in extracting the positivity bounds of:

@ Leading energy dependence only, s2. (Dim-8)

A(s,0) = cg + ca5° + cy58*

@ EFTs with more than one fields/particles. (e.g. SMEFT

operators; or those involving multiplet particles, chiral
PT, spin-2 EFTs, ...)

@ Somewhat orthogonal to talk by F. Riva yesterday (one field
but with all dimensions > 8).

@ Motivation: phenomenologically interesting scenarios, SMEFT,
massive gravity, chiral PT, inflation... etfc.



Main result:

@ Finding bounds is a geomeftric problem:
finding the extremal rays of a spectrahedron.

@ Small number of fields: analytical solution.

@ Large number of fields: solve by semi-definite programming
(SDPs).
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Dispersion relation

(not necessarily elastic)

See also talk by Riva

Causality -> Cauchys integral formula

Unitarity -> Optical theorem
Froissart bound

A(s,0) < O(sln2 s)

+ .. + S<->u crossing




ijkl: particle index  M? =m7 +m? Forward scattering amp,

J
1 <9 kb - + mi +m? at low energy
(calculable in EFT)
d? 1 / o
2
@ 1] —kl (5—§M 7t:O>
S o ds My x (s, Hx)Mg (s, Hx) e
— : = |
e (A7 n (3 % §M2) S<->U crossing
A ek
X = BSM states Amplitude

summation & PS integration of SM -> X



d? 1 :
where M = 7 —— M5k (MQ) , mY% = My x(p1lx)

Miikl_ contains all scattering info at D8, and is calculable in SMEFT.
Mijkl e Z C((XS)/AZLMéjkl




The standard approach: elastic positivity

Simplest generalization from 1-scalar EFT to multi-fields:

o When i=k, j=l, (i j->ij),
RHS -> Ir (mmT) >0ije.

9 Dim-8 coef space



The standard approach: elastic positivity

Simplest generalization from 1-scalar EFT to multi-fields:

o When i=k, j=l, (i j->ij),
RHS -> Ir (mmT) >0ije.

1" Dim-8 coef. space
@ Superposition: M(|u) + [v) — |u) + [v)) = v'vIu*Fo* - MY
with superposed states: |u) = u' i), |v) = v* i)
RHS -> \u-mx-v\2+\u-mx-v*\2 >0

l.e.

¥ Dim-8 coef. space



Chiral PT

i — — Expected 68% CL
b EXPECtEd 95% CL

i — — Expected 99% CL
™~ \; — Observed 95% CL

I~

dRGT massive gravity
T

Allowed

c3
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Beyond elastic positivity

® Motivations for an improved approach.

o is however to the defermination of
degree-4 positive semidefinite (PSD) polynomial, which is
NP hard.

@ e.g. uv are 12-dimensional in the aQGC problem.
@ Connection to UV physics is not clear.

@ Elastic bounds are not the optimal.




@ Being completely ignorant about m, the only essential math structure
we need is

i(jIkID: j,| symmetrized
- 7 i 2
MY* ¢ C" = cone ({mz(9m|k|l), m € R"” })
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@ Being completely ignorant about m, the only essential math structure
we need is

i(jIkID: j,| symmetrized
o 7 i 2
MY* ¢ C" = cone ({mz(9m|k|l), m € R"” })

® Which is a “convex cone”

@ Convex cones: are sets closed under addition and positive scalar
multiplication.

@ Conical hull: The set of all positive linear combinations of elements
of X = {x}, is a convex cone, denoted by C' = cone(X)

@ Salient cone: if the cone C does MO = 3™ il 5 M = 23 miimi > 0

not contain any straight line. M2 i 0
B

reCand =g eGi—r —90
L

= me=0 = MYk =0
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Representations of polyhedral cones

face-representation -representation
Ei

The polyhedral cone 1x} is Edges are the generators of {x}
bounded by hyper-planes:
A e 0 g @=) wk (w20
no - T > 0

{2} = {tbne ({Ez}) (conical hull)

11



Representations of general cones

inequality-representation exiremal-representation
ER

-> posi. bounds

o Extremal Ray (ER): An element x is an extremal ray of cone C, if it
cannot be split into two other elements linearly independent:
ifz=u+vand u,v €€, then r = Auor 3 \v A > (
@ Denote the set of ERs by ext({x})

@ (Krein-Milman theorem): a salient cone C is a conical hull of its ERS,
C = cone(ext(C)), i.e. generators = ERs

12



@ Solution #1: if the EFT has symmetries, mi is determined by symm.
=> Use the “extremal representation approach”:

® The ERs/generators of the cone are “projectors”

cone ({mi(jmlk"l), m € IR{”2})
cone ({p;l(jlkll)}) pigkl — ZCZ}Q (C,:f‘)*

@ ‘vertex enumeration” to get facets.

“Vertex enumeration”

>

E.g. reverse search

@ ERs <=> UV states.
(For pheno applications see )
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Triangular cone

1S e 35 1

4-Higgs operators:

Oso = [(D,®)'D,®] x [(D*®)' D ] fs0=>0
Os.1 = [(D,®)"D*®] x [(D,®)" D" ®] foot fs2 >0
Os.2 = [(D,®)'D,®] x [(D*®)! D*®] fso s+ fsa 20 |
1A
6-facet 4D cone
4-W operators: Fra >0, |

Or,0 = TT:WMVWMV]Tr[WaBWa’B: i fis- oo > ()
OT,Q i Tr:WO{MW'UJB]Tr[WﬁyWVa: FT’Q = 8FT,10 Z 07
Or 15 TI’:WWVAV“B]Tr[WMBWW: 8Fro+4Fr1 +3Frs > 0,

g 3 4 5 12F1 o +4Fr1 + 5Fr 9 + 4Fr 10 > 0,
O = Tr[W,,, WHTr[W,, s WP : ’ : |
7,10 [ 1224 ] [ of ] AFro+4F71 1+ 3Fr 2+ 12Fr 10 > 0.

4-electron operators:

O, = 0%(ev"e)0a(evue) , O, <000 >0, O <0
Oq = 8% (ev"e)a(lvul) , 2v/C1Cy > Cs,

Os = D°(él) Da(le), 2\[@Cl (G G
O4 = 0%(Iv*1) B (lv,0) |
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Q: What if there is no symmetries? How to characterize bounds?

Solution #2: use duality.

® Dual cone is defined as

Ch (@0 M>0, YMcT |
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Q: What if there is no symmetries? How to characterize bounds?

Solution #2: use duality.
® Dual cone is defined as
Ch —{@lid M0, yMcC
@ i.e. set of all valid linear bounds.

@ Are they enough to carve out exactly the original cone C?

@ Yes: use hyperplane separation theorem.

O = IM|@ M>0 YOc Ol F

@ These bounds are not independent.

® The independent ones are (using the extremal rep. of the dual)
o' = {M Q- M >0, VO € ext (c”)} |

g Pl ! Any Q is a positive linear combination of the ERs
@ Assuming the Cn4™ is salient.

16






4
o Caveat: C" is contained in a lower-dim subspace of R"
4 .- kIl 2
C" = cone ({m’(Jml Dim e R™ })
@ Crossing symmetries:
@ i<->K, and j<->| exchanges. These are s<->u crossing when 1->0.

@ In additional, (i<->j) and (k<->l) simultaneously. Or equivalently, m
matrices are symmetric or anti-symmetric. (implies P-conservation)
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@ i<->K, and j<->| exchanges. These are s<->u crossing when 1->0.

@ In additional, (i<->j) and (k<->l) simultaneously. Or equivalently, m
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@ Define the crossing symmeftric subspace.

Cn4 “ §n4 . {7. | Tigkl _ qrilkj _ gkjil _ sz‘lk}
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o Caveat: C" is contained in a lower-dim subspace of R™

C™" = cone ({mi(jmlk”), m € an})

@ Crossing symmetries:

D

o

i<->K, and j<->| exchanges. These are s<->u crossing when 1->0.

In additional, (i<->j) and (k<->l) simultaneously. Or equivalently, m
matrices are symmetric or anti-symmetric. (implies P-conservation)

Define the crossing symmeftric subspace.
Cn4 “ §n4 . {7. | Tigkl _ qrilkj _ gkjil _ sz‘lk}

X
C™" contains straight lines perpendicular to this subspace, and
thus not salient.

b ?”4

f v,

O

Not needed!

16



@ Knowing that physical amplitudes are crossing symmetric,
’I’L4 ot CTL4* m §’I’L4
1 4 4
c={me8" | - M>0v0eQ™}

o i.e. define the duality inside the symmetric subspace.

17



@ Knowing that physical amplitudes are crossing symmetric,

Q”4 ~ Cn4* ﬂ§n4
C”4:{M€§”4 | Q~M20VQEQ”4}

o i.e. define the duality inside the symmetric subspace.

@ What is Q”4?
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@ Knowing that physical amplitudes are crossing symmetric,
Q’I’L4 ot (j’fl,él>I< m §’I’L4
1 4 4
c={me8" | - M>0v0eQ™}
o i.e. define the duality inside the symmetric subspace.
® What is Q”4?
@ With crossing symmetry
Q- M=>0

— QUK Z (MmEmF 4+ mimbi) = 2 ngﬂ QR m* > 0 vm e R™
(@7 (@7

A 2 2 4 2 2 4
— Q(U)a(kl) i 0 — Q & S:’f_ XN bn i SZ’_ X1 m?n
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@ Knowing that physical amplitudes are crossing symmetric,
Q’I’L4 ot (j’fl,él>I< m §’I’L4
1 4 4
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Q- M=>0
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(@7 (@7

A 2 2 4 2 2 4
— Q(U)a(kl) i 0 — Q & S:’f_ XN bn i SZ’_ X1 m?n

4
@ Q" is a spectrahedron.
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@ Knowing that physical amplitudes are crossing symmetric,
nt — o' g §"’4
Ll - {/\/l c s | Q- M 20VQEQ”4}
o i.e. define the duality inside the symmetric subspace.
@ What is Q”4?
@ With crossing symmetry
Q- M2=>0
= Qijkl Z (mgjm];l +- mf)fm’;j) ) Zmi’f Qijklmﬁl >0 Vm e R™
o

She 2 2 4 B 4
— Q(U)a(kl) i 0 — Q & S:’f_ XN bn i S?_ X1 m?n

4
@ Q" is a spectrahedron.

@ Finding positivity bounds = finding ERs of some spectrahedron.
Cle {/\/l e§”4 | Q- M >0V €lext (Q”4)}

17



Spectrahedron?

Wiki: the set of n x n positive semidefinite matrices forms a convex cone, and a

spectrahedron is a shape that can be formed by inftersecting this cone with
a linear affine subspace.

@ Let@;, i=0,1,..,N be the basis matrices of the affine space
Q(z) = Qo + Q)
@ The spectrahedron G = {z | Q(x) = 0}

@ How do they look like? From google:

1y



Spectrahedron?

@ Each point x in a spectrahedron is contained in (the relative interior of) a unique
facet, F(x)

19
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Spectrahedron?

@ Each point x in a spectrahedron is contained in (the relative interior of) a unique
facet, F(x)

dimifolx )| =2 ‘ '
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Spectrahedron?

@ Each point x in a spectrahedron is contained in (the relative interior of) a unique
facet, F(x)
dim{E(x)] =3
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Spectrahedron?

Each point x in a spectrahedron is contained in (the relative interior of) a unique

facet, F(x)
\ Ny
\
\\\

The null space of Q(x) is constant on F(x) -> numerically identify F(x) for any x

@ Let {ujj be basis of Null(Q(x)), then Null(B) is the linear span of F(x)

B o0 oo 9

b Qluk A 0 QmUk

19



1

General 2-scalar case: L2 Fc’ijklOijkla Oijkl = 8Mq5i8“quf9y¢k5’”¢l

6 Ops: Cllll, C2222, C1212, Cl1122, Cl112, C1222.

kl=11 22 12
4C1111 Cligs  Criz Chiis) : I / g b e
_ | Clisa 4C2222 Cizz  Ciogo Q°? >3Q= 22 i f
Mscalar— C C C C/ 9
1112 1222 1212 Ci1a9 12 et
Ciire Chiaze O] Ci212
5 ) 1122 4 o1 \ e f b
Clios = Cii22 + 501212
‘ j QLo P ae O o T 0O 0 0 O
: 0O 0 0 O 1 @Gl Gl 0 =0
Qol=i=bi=q g 0% o || ool LG o o] Q(r) = 1;Q;
§ 0O 0 0 O 0 0 Bl 0O 0 0 O
0 0 0 0 0 0 1t 00 G\
0O 0 0 O 0O 0 0 O Qa0 :
B =00 140 } 1 0 0==0 : 0O 1 0 O
0O 0 0 1 10080 5 e D ) /

The spectrahedron: Q24 == {Q(:E) = CUzQz > O}
Positivity bounds: Q- M > 0, for all Q € ext (Q24)
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General 2-scalar case: L2 Fc’ijklOijkla Oz’jkl = 8M¢i8“qu(9y¢k5’”¢l

6 Ops: Cllll, C2222, C1212, Cl1122, Cl112, C1222.

ki=1ll 22 12
4C1111 Cligs  Criz Chiis) : I / g b e
_ | Clioa 402222 Chazz  Chaz Q°? >3Q= 22 e )
Mscalar— G C C C/ 9
FhE 1222 1212 1122 12 e f d
Cii12 Ciazz O] Ci212
f ; 1122 4 o1 \ e f b
Clios = Cii22 + 501212
AT 0500 OF 1 sl 0O 0 0 O
: 0O 0 0 O 1 Qi) @1 0 =0
Qol=i=bi=q g 0% o || ool LG o o] Q(r) = z;Q;
§ 0O 0 0 O 0«0 kol 0O 0 0 O
O 0 B0 0 0 % OO0 O\
0O 0 0 O 0O 0 0 O Qo051 :
G000 10 ; 1 0 0220 : § Jhi B § il )
0O 0 0 1 1 0.4 0 05 R e e ] /

The spectrahedron: Q24 == {Q(:E) = CUzQz > O}
Positivity bounds: Q- M > 0, for all Q € ext (Q24)
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3D “cross section” of 4D cones

Amplitude space Dual space (spectrahedron)

c?' Q>

ERs = UV particles ERs = posi. bounds
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3D “cross section” of 4D cones

Amplitude space Dual space (spectrahedron)

Q%
"‘
| (/ s /\‘f\

y

ERs = UV particles ERs = posi. bounds

Z2-odd scalar

1



3D “cross section” of 4D cones

Amplitude space Dual space (spectrahedron)
4 24
C- Q
| (o
-l s
i v
!
1]
y
|
ERs = UV particles | | ERs = posi. bounds
!
y
y

1



3D “cross section” of 4D cones

Amplitude space

ERs = UV particles

c?'

Bounds

Q>

!l""

5

C1111 = 0, Ca200 > 0, Ci212 >0

44/C1111C2222 > £(2C1122 + Cia12) — Cia1o

~

v,

1

Dual space (spectrahedron)

ERs = posi. bounds
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General 2-scalar case: L2 Fc’ijklOijkla Oijkl = 8Mq5i8“quf9y¢k5’”¢l

6 Ops: Cllll, C2222, C1212, Cl1122, Cl112, C1222.

Mscalar e

01122 —= @ 501212

4
ERs of Q% ->
=11
22
12

21

® To check these are ERs, use the B matrix.

E /
4C1111 Cii9o  Ch112
/
Cli90  4C%929 Ch292

C11112 C11222 01212
/
¥ 01112 C11222 01122

kl=11

CL2

ab
ac
ac

Cii12 | : =l
C1222 Q2 > 0O = 2
C'1122 : 12
Ci212. a1
22 12 21
ab ac ac J
b2 bc bc
be: Icc Zab ab

bc ab

kl=11

[ a
b

2¢2 — ab :

\

@ Can prove these are complete set of ERs.

R2

(&
€

2919

b e
Sidi)
roid
e
c® > ab




Linear bounds for each (a, b, ¢) real, c2>= ab:

[a C b]-D-[a c b]TZO Ve? > ab

[2Ciuv. Gilis Chios |
where D = | Ci112 2C1212  Cha2o2 | .
| Cr122 Choo2 205292

To remove a,b,c dependence:

flrys,w) = |w? =t pgl.D. [w? IS g

>0 Vr,s,w e R,
@ i.e. a quartic form in (r,s,w) is PSD

@ Can be determined by completing squares (for at most 3
variables, Hilbert 1888)

R3



Positivity bounds for general 2-scalar EFTs:

(/6'1111 >0 and 4C4111Ci212 —Ciy > 0 )
and {011120112201222 = C1111C 558~ OiaoCiops 4.C1219 (—012122 + 4C1111C2222) > 0

or [A = 3 (4C1111C2222 — C1112C1222) + (Ch122 + Ch212) 2 >0

3CT119
4C1111
and: ‘24 (8¢ A0 (C1111CFa90 + C7112C2222) — 9 (Ci22 + Ci212) (8C1111C2222 + C1112C11222)

[ + 2 (Ch122 + Ci212) 3} }

—2(Ch122 + C1212) < VA < Cra12 — 201122

and

i/

What if n>2? Either
1. Randomly search for ERs. (MC sampling of ERs); or
2. For a given amplitude M, numerically minimize Q.M on the spectrahedron.

@ This is a semidefinite programming (SDP).

24



The "MC"” approach

Recall each point x is contained in a unique facet, F(x), determined by
Null(B)
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The "MC"” approach

Recall each point x is contained in a unique facet, F(x), determined by

Null(B)

D

d

Start with a random point x
Find the (k-)face F(x)

Take a random straight-line in F(x) that
crosses X. Find its intersection with the
boundary of the cone (this is a SDP).

Take x to be the intersection point and
iterate, until F(x) is dimension 1

An ER is found.

RE



Works for large

problems!

4-Gluon OPs ->

T -0 0
0,0,0,1,0,0, 0]
0,0,1,1,1,0,0]
2,0,1,000.0, 0]
0,2,0,1,0,0,0]
0,0,3,0,2,0,0]
0,0,0,3,0,2,0]
1,1,2, 2 80000
6,0,3,0,2,0,0]
2.9 152N
0,0,4,0,0,0, —9]
6,0,6,0,5,0,0]
0,0,3,6,5,4,0]

0,
[
[
6,
4,
0,
6,
0,

X given by

0, 0,68 7:2. 0]
8,6,1,6,0,2,0]
0,6,3,12,5,0,0]
8,6,1,12,0,0,0]
0,6,6,9,10,4, 0]
0,12,0,14,0,0,—9]
0:0.8.80:8. ~ 91
12,0,14,0,0,0, —27]
6.5 121,00 =97
R, 16,4,8,0,8 —27]
0,24,0,12, 0,8, —27]
R22 194, 00 g 20

(G GA;u/) (GB GBpa
(G, GA)(GE,GBP
(G4, GG, GPoe
(G, GPH) (G, GPP

)
)
)
)

24, 0,12, 21, 15, 14, 0]
24,32, 24,4, 8 (1 27
48, 36,21, 27,25, 0, 0]
32,40, 4, 80,0, 0, —27]
[0, 48,0, 48, 0, 40, —81]
24,0, 36,24, 16, 40, —81]
0,0, 48,24, 32, 40, —81]
0,0, 24,48, 16, 56, —81]
88,32, 56,4, 40,0, —27]
96,42, 27, 84,25, 0, 0]
96, 66, 42, 39, 50, 4, 0]
120,42, 39, 42, 40, 14, 0]

7D polyhedral cone with 48 facets!

RE

dABEdCDE (Gﬁy GB;U/) (G;()ja GDpa)

JABE JCDE (Gﬁu éB;w) (Gga éDpa)

Plus a (D6)2 term from double insertion

0,0, 96,24, 64, 40, —81]

40, 32,80, 4,0,0, —189]

0,0, 24,120, 40, 104, —81]

0,0, 120, 24, 104, 40, —81]

(96,0, 144, 24, 64, 40, —81]

48, 0,96, 24,0, 40, —243)
0,192,168, 96, 112, 120, —405)
168, 480, 168, 156, 56, 160, —729]
264, 384, 156, 168, 16, 200, —729]
288, 384, 216, 168, 0, 200, —891]
480, 384, 480, 168, 160, 200, —729]
336, 768, 672, 216, 0, 200, —2187]




The SDP approach

Given amplitude M™*, how to check if it's allowed by positivity?
cr = {M e8| 9. M ZOVQEQ”4}

The semi-definite programming (SDP) approach:

min 9 - M
subject to © € spectrahedron

If a solution exists, then M is allowed by positivity.
@ Solvable within polynomial complexity.

@ In contrast to elastic positivity, which is NP-hard.

R7
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Example: improvements in SMEFT

SMEFT VVVV (aQGC) operators (W+B, n=12 modes): reproduced bounds by

taki
SM

which were obtained by
ng O(1000) discrete ERs in the amplitude space.

flavor sector (n=3 fields)

® Flavor violating NP sets lower bounds on flavor conserving ones.

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

— Elastic
— Exact

1 Elastic

e Center

-0.04 -0.02 0.00 0.02

RY



Example: improvements in spin-2 EFT

® dRGT massive gravity (n=5): improves slightly the minimum value of d5.

® Z2 bi-field spin-2 EFT (n=10): improving the elastic (superposed) positivity.

-0.2 -0.1 0.0 01 0.2 0.3
A

9



Summary

Positive structures arise at the dim-8 level in EFT coefficient space,
as a consequence of axiomatic QFT principles.

Realistic problems often involve multi-field EFTs, in which a convex
geometric perspective helps to understand these structures.

We convert the problem of finding bounds to a geometric problem:
finding the ERs of a spectrahedron.

@ For small n, can be solved analytically.

@ For large n, can be solved as a semi-definite programming
problem.

Improved some previous results.
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Anomalous quartic-gauge boson couplings

Or,0 = Te[Wyu WHITe[WogW ] Opy = Tr[Weo, WH | Tx[W,, g W]
OT,Q = ¥ WQMWMB]TI‘[WQVWV ] OT 10 = Tr[WWWW]Tr[WagWO‘B]

Or5 = Tr_WWWW]BagBO‘B Orp = Tr[WaVW ]B B
OT7 — TI‘-WOZMW“B]Bﬁ Bya OT 11 — TI“[WM,/W“V]B gBaﬁ
Ors =B, BB B Org= B, B’ By, BYE

Infinite number of ERs!

Linear: Fr,>0 Quadratic:
AFr1 4+ Fro >0
Fro+8Fri0>0
8Fro+4Fr 1 +3Fp2 >0
12Fp o+ 4F71 4+ 5F19+4F110 >0
ARl e RS o 1 s O

Fro(Fra+4Fr10) > F:/% 11
16 (2(Fro+ Fri)+ Fro) (2Frs + Frg) > (4Frs + Fr;)?
32(2Frs + Fro) (3Fr o+ Fry + 2Frs +4Fr19) > 3 (4Fr5 + Frq)?

2\/5\/FT,9 (Fr2+ 8Fr10) 2 max (4Fre + Fr7 — 4Fra1, Fri7r + 4Fr 1)

4Fre6+ Fr7 >0 4\/<8FT,O +4Fr 1+ 3Frs) (2Frs + Fry)
brp=l > max (—8Fr5 — Fr7,8Fps +4Fre + 3Fr ;)
2FT,8 i FT,g Z 0

4\/FT,9 (12Fpg +4Fe i it
> max (4Fre¢ + Fr7 — 4Fr 11, Fr7 +4F7r11)

Frog>0

4\/6\/(2FT,8 + Fro) (12Fp0 + 4F7r1 + 5F7r2 + 4F7 10)
> max [—3 (8Frs + Fr7),3 (8Frs + 4Fre + 3Fr 7))

\/6\/(4FT,8 £ P o ) (GHE g DB =3 Fp & 60 )
> max [—3(2Frs + Fri1),3(2Frs + Fr7+ Frai)]

2\/(12Fps + TFrg) (12Fro + 4Fr1 + 5Fr» + 4Fr 10)

= max i s =S R 12 T Ak B 2 4,
—12F7 s Ko+ 2P711,12Fp s +4Fpe + 5877 + 2Fr11)
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To formulate this approach, symmetries of the system help
(will also discuss cases without symmetries)

® Make use of symmetries of the problem (SM symmetries, helicities)

du iy Imyt
@ Dispersion relation: N9k — / + (F &)
Z (eA)2 7'(' %MQ)
/Dynamics
® Becomes: MWk — Z / ’ 5 X|M’T > ’ ;(Jlk\l)
e d(ch) MQ) ¥~ Symmetry

i(jlkI: j,| symmetrized

o PY" is the projective operator of an irrep r, obtained by CG coefficients.
P?Zijkl Z C’I“ O ( )

@ The generators are simply (subset of) Pililkll)
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@ At least for simple cases, the ext(G) can be found by

Inspection.
@ E.g. simplest case: / a b 00 \
n=2, with some Z2 symmetry, e=f=0, T -> g U
00 d:b
@ There are two kinds of ERs \ 0-0 baw )
) : a=b=c=0, d=1
3 . ac=b2, d=|b|, a,c>0 A 3D cross section

of the 4D cone (a,b,c,d)

@ To get bounds, write the amplitfude as

W5

0G0 \
TR
MRS oA )
Ca TR
0B s

01,03,04 Z 0 and N/ 0103 2 :|:202 s 04
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@ At least for simple cases, the ext(G) can be found by

Inspection.
@ E.g. simplest case: / a b 00 \
n=2, with some Z2 symmetry, e=f=0, T -> g U
00 d:b
@ There are two kinds of ERs \ 0-0 baw )
) : a=b=c=0, d=1
3 . ac=b2, d=|b|, a,c>0 A 3D cross section

of the 4D cone (a,b,c,d)

@ To get bounds, write the amplitfude as

W5

0G0 \
TR
MRS oA )
Ca TR
0B s

01,03,04 Z 0 and N/ 0103 2 :|:202 s 04
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Pheno applications...

® May change the interpretation of measurements.

359" (13 TeV) Excluded

: — — Expected

I

Jan 2019
fro/A*

Jan 2019 Channel
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsSMPaTGC#aQGC_Results




@ Test QFT principles: Non-local UV completions violating polynomial
boundedness, violation of Lorentz invariance, or even SMEFT expansion not
valid...

@ A similar study for future ee colliders: measure the “scale of violation”

2 @
ZAT = hin minld Mis - DGk ,0
€1,€2 P d82

= i 1
A7 € [Alws Ahigh) 5 due to exp error

02




Infer UV model from EFT measurements

: Given the measured values of the operator coefficients around the
electroweak scale, fo what extend can we possibly determine the nature of the new physics
beyond the SM?
see also

SM +
particle 2

Many BSM models

SM + i
particle 1

Less UV DoFs

TSM +

: ’VS + 2 :
particle 4

SM + :
article 3 e
P (38&4)




Testing and confirming the SM: Null result of measurements at dim-6 does
not exclude all BSM, but does at dim-8 by using positivity bounds

Dim-6: no positivity, different states may
cancel each others effects.

excluded by direct searches

® E.qg., scalar and vector generate 4- excluded by lowenergy " Ol

precision measurements .*

fermion operators with opposite signs.

@ No UV particle can be absolutely
excluded.

Dim-8: with positivity, different states are
not allowed to cancel.

@ All states can be exclude to some
absolute scale. (by using posi. bound)

@ Unlike dim-6 cannot lift this limit by
adding more and more BSM states.

@& A robust confirmation of the SM.




Need for complete bounds:

@ For most of these applications, its very useful to identify the EXACT
positivity bounds.

@ To test violation of QFT principles, conservative bounds will
degrade the sensitivity to the amount of violation.

@ To infer UV models/states, need to locate exactly the “vertices”,

or “edges”, or more strictly the Extremal Rays in the positivity
cone.

@ To exclude all BSM models, at least need positivity bounds in all

directions. (So that the positivity cone cannot contain a straight
line).



