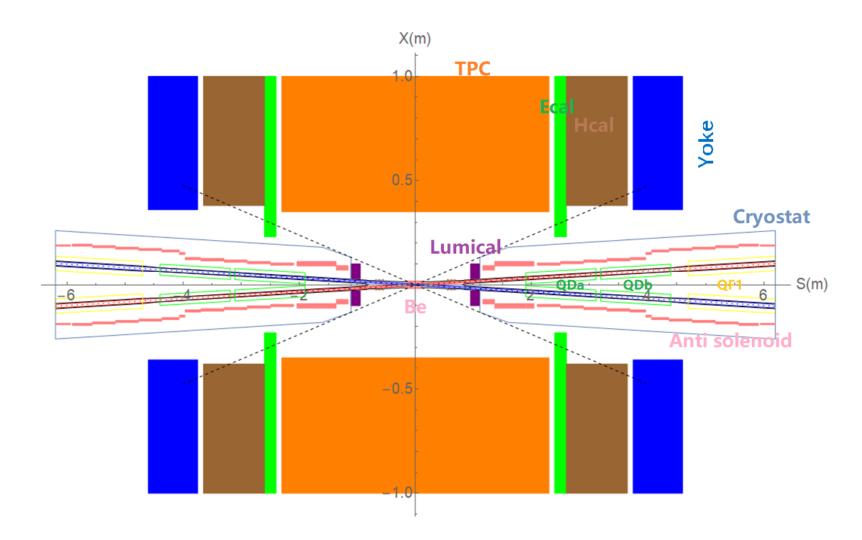


nstitute of High Energy Physics Chinese Academy of Sciences

CEPC MDI Issues

Sha Bai for CEPC MDI group

IAS Program on High Energy Physics, Hong Kong, Jan 19-21, 2021. 2021-01-21


Outline

★ MDI design for High Luminosity Higgs
★ CDR → TDR optimization for MDI
★ MDI mechanics and integration
★ Summary

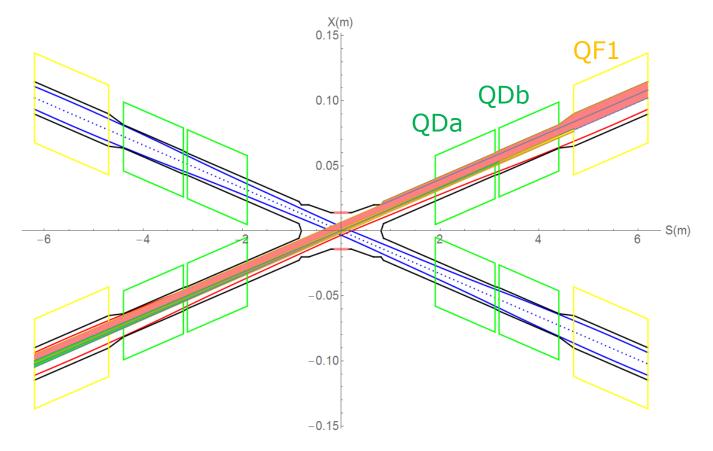
MDI layout and IR design

国科学院高能物理研究所

- The Machine Detector Interface (MDI) of CEPC double ring scheme is about ±7m long from the IP.
 The CEPC detector
 - The CEPC detector superconducting solenoid with 3T magnetic field and the length of 7.6m.
 - The accelerator components inside the detector without shielding are within a conical space with an opening angle of cosθ=0.993.
 - The e+e- beams collide at the IP with a horizontal angle of 33mrad and the final focusing length is 1.9m.

MDI parameters

	range	Peak filed in coil	Central filed gradient	Bending angle	length	Beam stay clear region	Minimal distance between two aperture	Inner diamete r	Outer diamete r	Critical energy (Horizonta I)	Critical energy (Vertical)	SR power (Horizont al)	SR power (Vertica I)
L*	0~1.9m				1.9m								
Crossing angle	33mrad												
MDI length	±7m												
Detector requirement of accelerator components in opening angle	8.11°												
QDa/QDb		3.2/2. 8T	141/84.7 T/m		1.21m	15.2/17.9mm	62.71/105. 28mm	48mm	59mm	724.7/663.1 keV	396.3/26 3keV	212.2/239. 23W	99.9/42. 8W
QF1		3.3T	94.8T/m		1.5m	24.14mm	155.11mm	56mm	69mm	675.2keV	499.4keV	472.9W	135.1W
Lumical	0.95~1.11m				0.16m			57mm	200mm				
Anti-solenoid before QD0		8.2T			1.1m			120mm	390mm				
Anti-solenoid QD0		3T			2.5m			120mm	390mm				
Anti-solenoid QF1		3T			1.5m			120mm	390mm				
Beryllium pipe					±120mm			28mm					
Last B upstream	64.97~153.5m			0.77mrad	88.5m					33.3keV			
First B downstream	44.4~102m			1.17mrad	57.6m					77.9keV			
Beampipe within QDa/QDb					1.21m							1.19/1.31 W	
Beampipe within QF1					1.5m							2.39W	
Beampipe between QD0/QF1					0.3m							26.5W	


QDa/QDb, QF1 physics design parameters β_v*=1mm, β_x*=0.33m

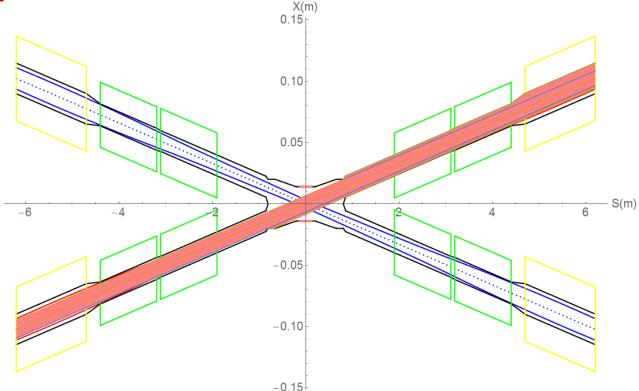
QDa/QDb	Horizontal BSC 2 (18σ _x +3)	Vertical BSC 2(22σ _y +3)	e+e- beam center distance	QF1	Horizontal BSC 2 (18σ _x +3)	Vertical BSC 2(22σ _y +3)	e+e- beam center distance
Entrance	9.15/12.41 mm	12.89/15.22 mm	62.71/105.2 8mm	Entrance	19.66 mm	13.21 mm	155.11 mm
Middle	10.37/14.84 mm	14.61/14.88 mm	82.84/125.4 1mm	Middle	23.02 mm	12.00 mm	179.87 mm
Exit	12.13/17.92 mm	15.21/13.87 mm	102.64/145. 21mm	Exit	24.14 mm	11.60 mm	204.62 mm
Good field region	Horizontal 12.13/17.92 mm; Vertical 15.21/15.22 mm			Good field region	Horizontal 24	14 mm; Vertical	13.21 mm
Effective length	1.21 m			Effective length		1.5 m	
Distance from IP		1.9/3.19 m		Distance from IP		4.7 m	
Gradient		141/84.7 T/m		Gradient		94.8 T/m	

SR on IR beam pipe from last bend upstream and Final Doublet

- There is no SR photons hitting the central beam pipe in normal conditions.
- Single layer beam pipe with water cooling, SR heat load is not a problem.

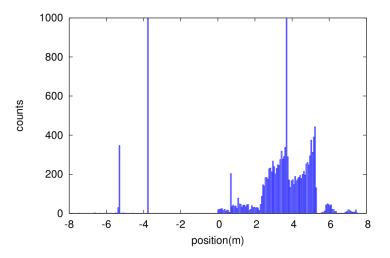
Region	SR heat load	SR average power density
0~805mm	0	0
805mm~855mm	12.5W	69.4W/cm ²
855mm~1.9m(Q Da entrance)	1.06W	0.28W/cm ²
QDa	1.19W	0.27W/cm ²
QDa~QDb	3.73W	12.95W/cm ²
QDb	1.31W	0.3W/cm ²
QDb~QF1	26.5W	4.9W/cm ²
QF1	2.39W	0.44W/cm ²

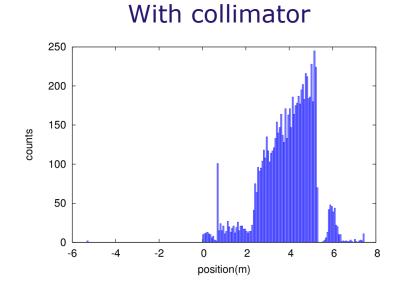
SR from last bending magnet upstream of IP


Abnormal condition

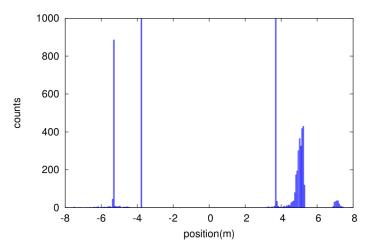
- SR photons hitting the bellows under the extreme beam conditions, temperature rise ~1°C
- Extreme condition, eg, if a magnet power is lost, a large distortion will appear immediately for the whole ring orbit. The beam will be lost when exceeded.
- In extreme cases ~ at least 10 times per day. The beam will be stopped within 0.5ms when abnormal. It is not afraid of this 0.5ms for other material beam pipe except beryllium pipe.
- The background of the detector should not be considered under abnormal conditions.
- It is not necessary to care about whether the beam orbit deviation will affect detector operation, since the high background part will be removed when data analysis is carried out.

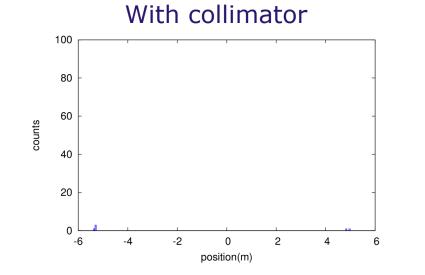
SR will enter into the bellows (no cooling):


- ➢ IP~677mm, no SR heat load.
- ➤ -677~-805mm beam pipe, SR power ~14.65W, APD~ 31.8W/cm².
- ➤ -805~855mm beam pipe, SR power~12.96W, APD~72W/cm².
- ➤ Temperature rise ~1°C

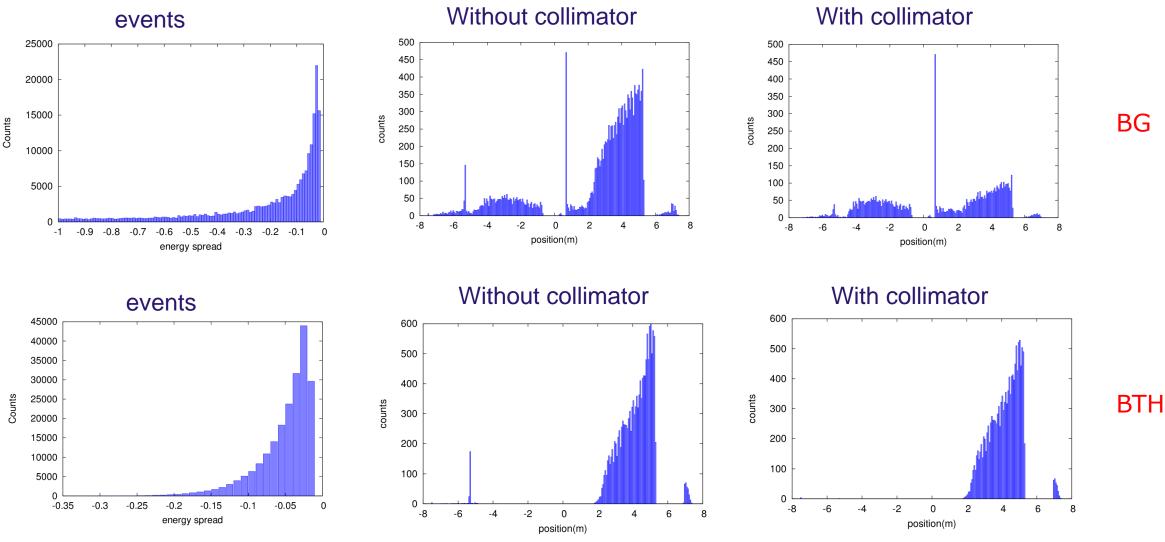


Beam loss from RBB and BS


Without collimator



Radiative Bhabha scattering


Without collimator

Beamstrahlung

Beam loss from Beam-gas bremsstrahlung and Beam thermal photon scattering

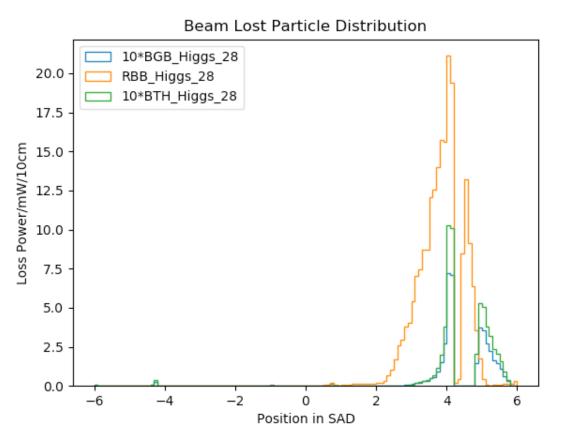
科學院為能物理研究所

BG

Collimator design

- > Beam stay clear region: 18 σ_x +3mm, 22 σ_y +3mm
- Impedance requirement: slope angle of collimator < 0.1</p>
- > To shield big energy spread particles, phase between pair collimators: $\pi/2+n^*\pi$
- > Collimator design in large dispersion region: $\sigma = \sqrt{\epsilon\beta + (D_x\sigma_e)^2}$

name	Position	Distance to IP/m	Beta function/m	Horizontal Dispersion/m	Phase	BSC/2/m	Range of half width allowed/mm
APTX1	D1I.785	2388.31	100.99	0.2	384.11	0.00181	1.81~8.42
APTX2	D1I.787	2325.75	100.99	0.2	384.36	0.00181	1.81~8.42
APTY1	D1I.791	2075.48	19.52	0.1995	387.46	0.003348	0.079~3.3
APTY2	D1I.793	2012.92	19.52	0.1995	387.71	0.003348	0.079~3.3
APTX3	D10.5	1856.35	101.95	0.20	6.877	0.00182	1.82~8.45
APTX4	D10.7	1918.92	101.95	0.20	7.127	0.00182	1.82~8.45
APTY3	D10.10	2075.33	101.95	0.1	7.75	0.00182	0.182~3.67
APTY4	D10.16	2388.17	101.95	0.1	9.00	0.00182	0.182~3.67


> horizontal collimator half width $4mm(13\sigma_x)$, Vertical collimator half width $3mm(22\sigma_v)$

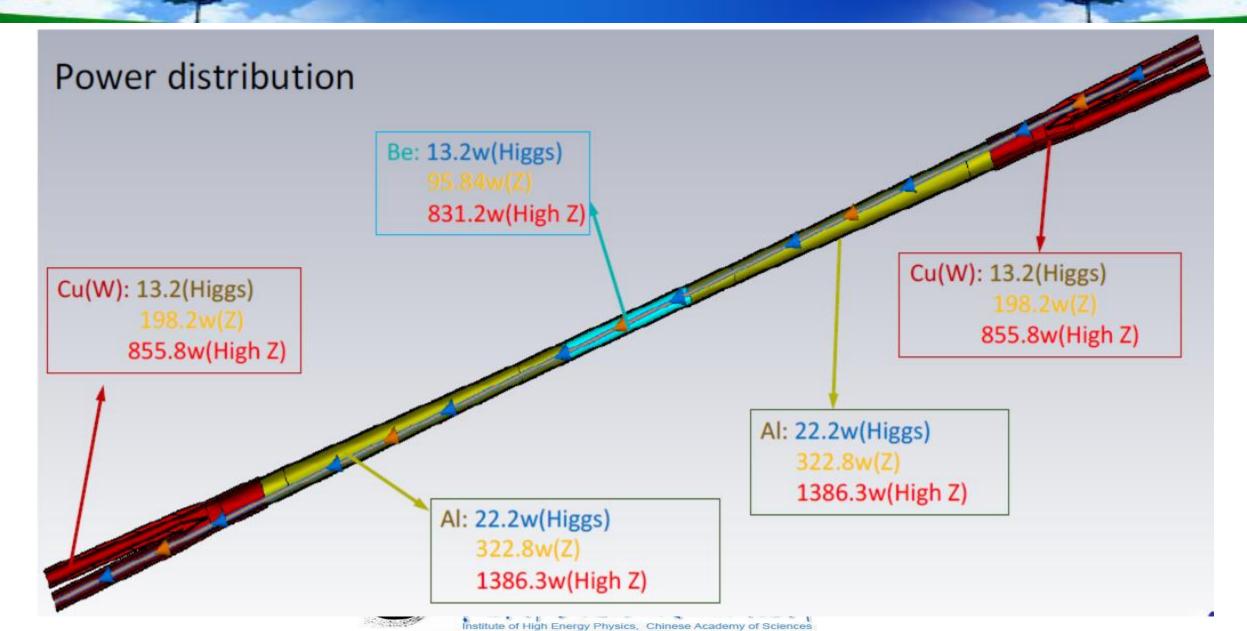
> The collimators will not have effect on the beam quantum lifetime.

Radiation background

- > Including Radiative Bhabha, Beam-Gas, Beam Thermal Photon. Almost No Beamstrahlung.
- Normalized to loss power in mW(one beam).
- ➢ Higgs mode in CDR.

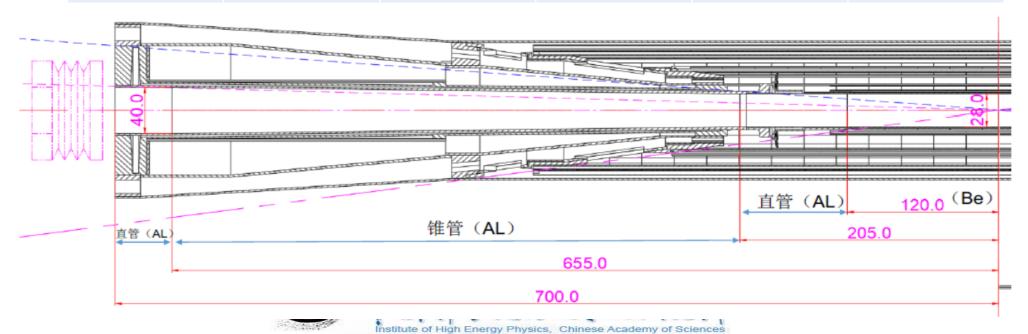
- ➢ Higgs Backgrounds on 1st layer of Vertex.
- \succ With a safety factor of 10.

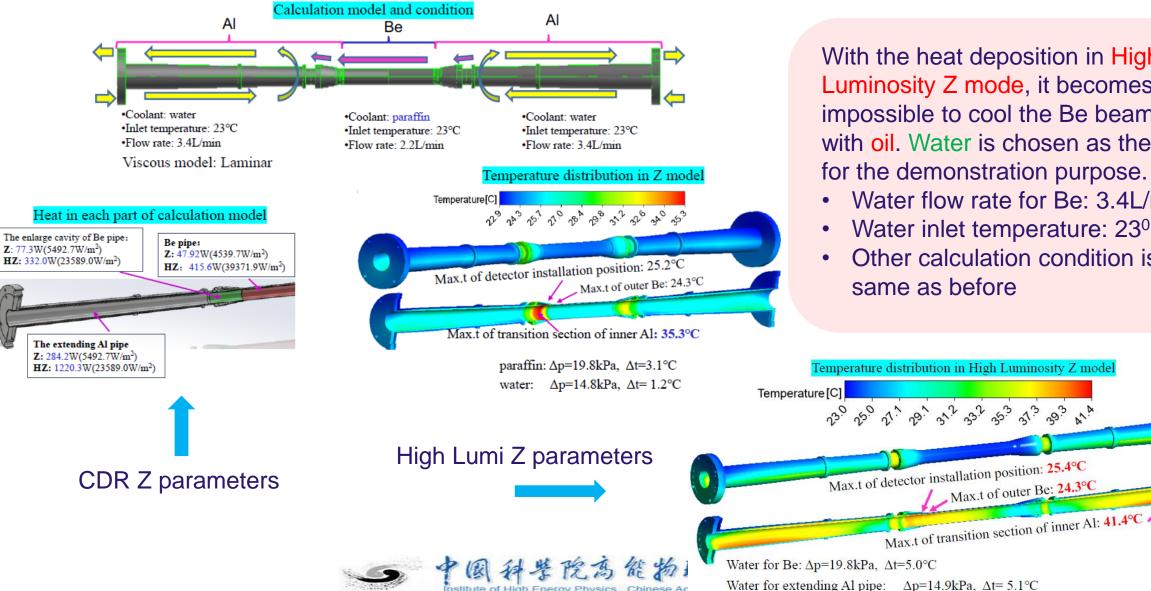
Background type	Hit Density(<i>cm</i> ^{−2} · <i>BX</i> ^{−1})	$TID(krad \cdot yr^{-1})$	1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$
Pair production	1.91	526.11	1.05×10^{12}
Synchrotron Radiation	0.026	15.65	
Radiative Bhabha	0.34	592.66	1.44×10^{12}
Beam Gas	0.9607	1235.9	3.37×10^{12}
Beam Thermal Photon	0.02	22.31	6.20×10^{10}
Total	3.2567	2392.63	5.922×10^{12}


Heat load in IR from beam loss

Region	SR heat load from RBB	SR heat load from BS	SR heat load from BG	SR heat load from BTH
Berryllium pipe	6.7mW	0	0	0
Detector beam pipe	0.024W	0	4.8uW	1.2uW
Accelerator beam pipe before QDa	0.17W	0	4.2uW	1.2uW
QDa~QDb	2.13W	3.8uW	5.9uW	1.8uW
QDb~QF1	0.01W	3.8uW	0.5uW	0.6uW
QF1	0.26mW	0	3.7uW	0.66uW

Heat load in IR from beam loss background is so small, compared to synchrotron radiation and HOM.

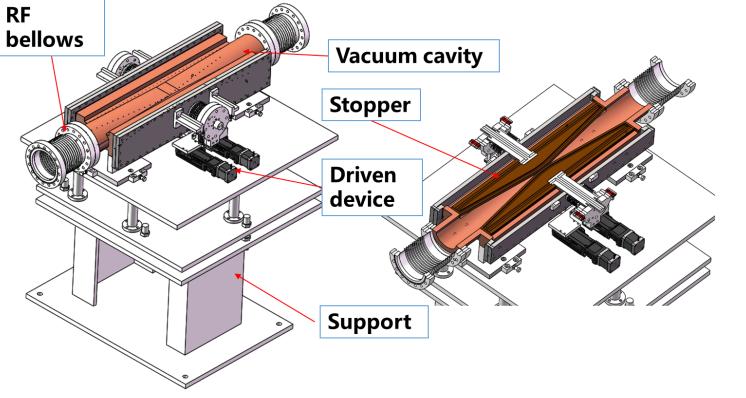

HOM power distribution

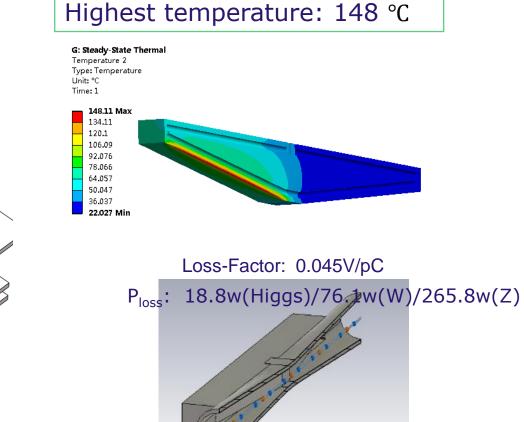

Beam pipe structure

Berryllium (central) and Aluminum(forward) beam pipes

From IP(mm)	Shape	Inner diameter(mm)	Material	Inner surface area(mm ²)	Marker
0-120	Circular	28	Be	10556	
120~205	Circular	28	AI	7477	
205~655	Cone	28~40	AI	48071	Taper: 1.75
655~700	Circular	40	AI	5655	

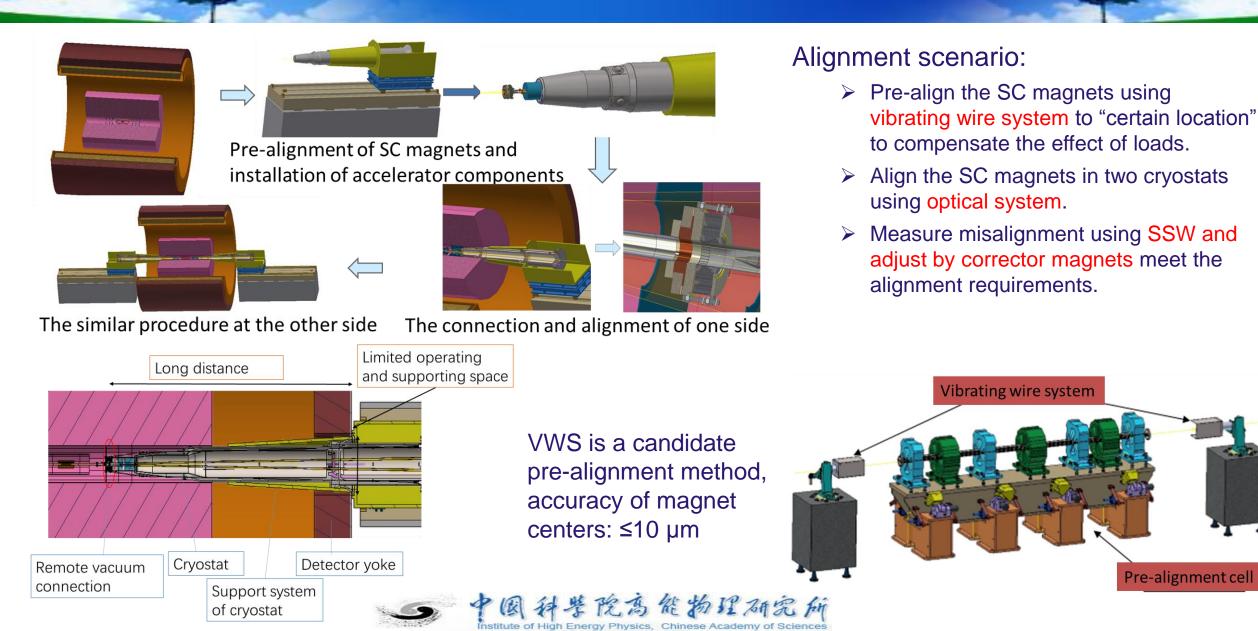
Beam pipe thermal analysis

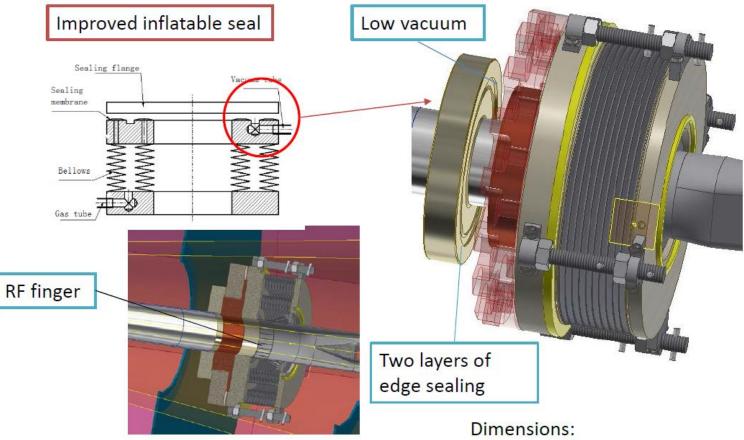



With the heat deposition in High Luminosity Z mode, it becomes impossible to cool the Be beam pipe with oil. Water is chosen as the coolant for the demonstration purpose.

- Water flow rate for Be: 3.4L/min
- Water inlet temperature: 23°C
- Other calculation condition is the same as before

Movable collimators


- Located in straight section between two dipoles, the length is 800 mm.
- SR power: 7700W @120GeV, 30MW



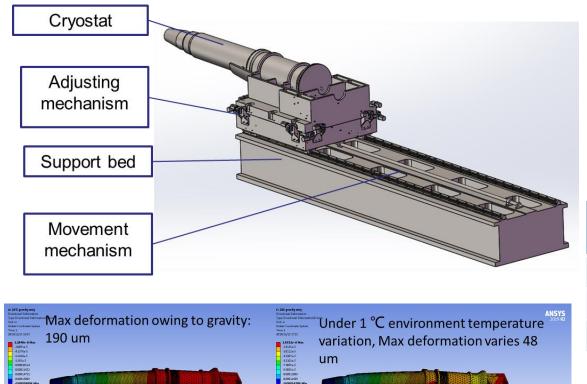
MDI integration and alignment

Remote vacuum connector

- Replace the sealing membranes by two layers of edge sealing.
- Transversal: Max. φ174mm

国科学院高能物理研究所

• Longitudinal: ~83mm


Difficulties:

- Transversal space: All the structure should be within detection angle.
- Leak rate requirement: Ultra-high vacuum. Leak rate requirement: ≤2.7e-11Pa.m3/s
- Longitudinal space: Bellows should absorb deformation when baking. → Add Z-direction support, length has been decreased to 83mm.
- Minimize thermal loads: The thermal loads mainly includes SR power and HOM power. → Avoid SR power by layout design, and decrease HOM power by RF finger.
- Cooling: It is hard to dissipate the heat at RF finger which is thin, low thermal conductivity and far from the coolant.→ FEA

SC magnet supports

ANSYS 2019 82

2nd: Horizontal wiggling

ANSYS

1st: Vertical wiggling

Key points

包為能物理研究所

- Stability (static and modal)
- > Accuracy
- Easy-operating
- Dimensions \geq

Machine	Constraint	Requirements on ground motion (x/y)
Collider ring	luminosity reduction < 1%	< -/4nm
Booster ring	injection efficiency reduction < 1%	< 150/100nm
Injector linac	total <u>emittance</u> growth < 30%	< 200/250nm

- High stiffness for stability <u>conflict</u> Flexibility f high accuracy.
 Studies on support stiffness is on-going.
 Motor driven wedges jacks for high stiffness and Flexibility for
- accuracy.
- Auxiliarý support, high damping material/structure are also in consideration

Summary

- > The final focusing length has changed from 2.2m to 1.9m in High Luminosity Higgs.
- > There is no SR photons hitting the central beam pipe in normal conditions.
- Single layer beam pipe with water cooling, SR heat load is not a problem.
- SR photons hitting the bellows under the extreme beam conditions, temperature rise ~1°C
- Beam loss background in High luminosity Higgs with collimators can be reduced to the same level in CDR.
- > Hit density on first layer of vertex detector is low from radiation background.
- > Heat load in IR is mainly from HOM, especially in High luminosity Z mode.
- With the heat deposition in High Luminosity Z mode, it becomes impossible to cool the Be beam pipe with oil. Water is chosen as the coolant for the demonstration purpose.
- ➢ Highest temperature on collimators from SR and HOM is 148 ℃
- > MDI alignment system is preliminary considered and designed.
- > Replace the sealing membranes by two layers of edge sealing.

Thanks

