An Update on High Energy Plasma Based Injector for CEPC

Wei Lu Tsinghua University On behalf the IHEP-THU-BNU AARG team Jan 14, 2021

Mini-workshop on Accelerator: Plasma Acceleration IAS Program on High Energy Physics 2021

Outline

Background: CEPC/CEPC plasma injector

Preliminary Design v2

Current status: Physics and experiments

Outlook: Future experiments

Background: CEPC

IHEP-CEPC-DR-2018-01 IHEP-AC-2018-01

CEPC Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018

CDR (Acc.) International Review @ 2018.6.28-6.30 & Final Released @ 2018.9.2

CEPC Accelerator System

CEPC Low field Dipole in Booster Ring

Can we using a 10m scale plasma accelerator to boost the energy of the injector to about 45GeV?

(Twice excitation current) to design Field reproducibility ٠ <29Gs*0.05%=0.015Gs \rightarrow how to measure The Earth field $\sim 0.2-0.5$ Gs, the remnant ٠ field of silicon steel lamination $\sim 4-6$ Gs. 140.0 Y [mm] 120.0 Thinking beyond CDR 100.0 80.0 60.0 Nominal field error: ~0.1% 40.0 20.0 Uniformity requirement: ~0.05% 0.0 -20.0 Eddy current effect -40.0 -60.0 -80.0 - Sextupole coils outside vacuum chamber -100.0-120.0 -80.0 -40.0 00 40.0 80.0 120.0 160.0

-1200

Plasma-based wakefield acceleration

Plasma wave excitation

>10GeV/m acceleration

CEPC plasma injector & THU-IHEP AARG

IHEP-THU joint group on Advanced Accelerator Research

- > Foundation : March 2017
- THU Member : Wei Lu, Jianfei Hua, Shiyu Zhou, Yue Ma, Shuang Liu, Bo Peng,
- IHEP Member : Jie Gao, Dazhang Li, Guan Shu, Cai Meng, Dou Wang, Jingru Zhang, Xiaoning Wang

Outline

Background: CEPC/CEPC plasma injector

Preliminary Design v2

Current status: Physics and experiments

Outlook: Future experiments

CEPC Plasma Injector/Overall Goal

- Working out a conclusion on the feasibility of plasma injector for 45GeV energy.
- If feasible, presenting a technology design with as much as possible details.
- Meantime, also working on the feasibility study of a full energy plasma injector at 120-180GeV

Key Issue to address :

- ✓ Driver/ Trailer design : large charge(10+nC) shaped bunch generation
- ✓ Plasma source : meter-10meter scale uniform/hollow plasma source
- High transformer ratio high efficiency electron acceleration
- ✓ Stable high efficiency positron acceleration in electron beam driven PWFA
- Staging between different accelerators

CEPC Project timelines

CEPC plasma injector timeline

CEPC plasma injector concept design (V2.0)

Parameter	Symbol	Unit	Requirement	Achieved(in sim.)
Energy	E _e	GeV	45.5	45.3(e-) / 45.2(+)
Energy Spread	σ_{e}		< 0.2%	0.2%(e-) / 0.14%(e+)
Frequency	f_{rep}	Hz	100	100
Bunch Charge	N _e	nC	> 1.0	1
Emittance	E _r	nm∙rad	< 30	1.89(e-) / 1.0(e+)
Bunch Length	σ_l	mm	< 3	0.3(e-) / 0.3(e+)
Energy Stability			< 0.2%	
Longitudinal Stability		mm	< 2	
Orbit Stability		mm	< 5(H) / 3(V)	

Outline

Background: CEPC/CEPC plasma injector

Preliminary Design v2

Current status: Physics and Technology

Outlook: Future experiments

Key Physics and Technology

Electron Acceleration

> High transformer Ratio, High efficiency, Stability

- Positron Acceleration
 - Stable acceleration (different schemes), energy spread control, efficiency enhancement.....
- Conventional Accelerator design and optimization
 - Photon-guns、Linac、Positron generation and damping ring.....
- Beam manipulations:
 - dechirper, external injection, staging and cascading

I. Electron Acceleration

Goal : Stable High Transformer ratio Acceleration (3-4)

To Do : more realistic simulations, experimental demonstration, scaling verification

Tech :

- ✓ High fidelity 3D simulations with real parameters, tolerance analysis
- ✓ Cross-checking between different codes, combining PIC with beam line dynamics simulations
- ✓ Experimental verification on Tsinghua and SXFEL facilities, and scaling test
- ✓ FACET-II high charge experimental test

• How to Check :

- 1. Finishing front-to-end simulations, code cross-checking, tolerance analysis
- 2. Preliminary experimental results from Tsinghua and SXFEL facilities
- 3. Collaboration on FACET-II High energy High charge experiments
- **Expecting timeline :** 1) 2021.12 ; 2) 2021.12 ; 3) 2022.12 ?

High TR Electron Acceleration:

tolerance check

Tolerance analysis for HTR e- acc.

	Pertu	rbation No.		Error Source	Sensitivity
1	Deem energy	Driver			E_t
2	Beam energy	Trailer			E_t
3	Dun als alsonas	Driver		the error of phase and	$\overline{E_t}$
4	Bunch charge	Trailer		amplitude of Linac	$\overline{E_t}$
5	Dunch lonoth	Driver		accelerating structure,	$E_t \& \delta_{Et}$
6	Bunch length	Trailer		wakefield effect in	E_t
7	DMS anot size	Driver		Linac and orbit errors	E_t
8	RIVIS spot size	Trailer		of Linac	E_t
9	Bea	m energy spread			E_t
10	E	Beam distance			E_t
11	Р	Plasma density		plasma source	E_t
12		Transverse pos	sition	41	$Q_t \& \epsilon_{Nt}$
13	Offset		Driver	of Linea alements and	E_t
14		Transverse velocity	Trailer	wakefield affact in	E_t
15	T;1+	Driver		I inac	E_t
16	1111	Trailer		Linde	$E_t \& Q_t \& \epsilon_{Nt}$
17		Transverse position	Driver	transverse	E_t
18	Slice jitter		Trailer	longitudinal coupling	E_t
19	Since Jitter	Transverse velecity	Driver	in Linac	E_t
20			Trailer		E_t

Error analysis for HTR e- acc.

	Perturbation		Limitation	Linac output data
offset	Transverse	position	±2.3um	
	Transverse	position Driver Trailer Priver Driver Trailer Driver Trailer Driver Trailer	<0.05nrad	25prod/69 Sprod
	velocity	Trailer	<10urad	Soniau/00.oniau
Tilt	Drive	er	\pm 0.038urad	2.7urad
TIIC	Trailer		±180mrad	0.9mrad
	Transverse	Driver	±0.025nm	1.4um
Oliaa iittaa	position	Trailer	±3.7um	4.4um
Slice Jitter	Transverse	Driver	<0.1nrad	12nrad
	velocity	Trailer	<5urad	~0.1mrad
	Beam distance		±0.16%	
	Plasma density		±0.26%	

On going process

See Dr. Xiaoning Wang's talk

Error analysis for HTR e- acc.

The sensitivity of trailer emittance to perturbations

The sensitivity of trailer length to perturbations

II. Positron Acceleration

- Goal : Stable high efficiency positron acceleration in an electron beam driven PWFA (with low energy spread)
- **To Do :** check the feasibility of three (or more) possible schemes, stability and parameter tolerance

Tech :

- ✓ High fidelity 3D simulations with real parameters for three schemes, tolerance analysis
- ✓ Explore new possible schemes
- ✓ Experimental verification on Tsinghua and SXFEL facilities for stable possible acceleration modes
- ✓ Collaboration on FACET-II positron experiments

• How to Check :

- 1. Finishing front-to-end simulations, code cross-checking, tolerance analysis
- 2. Preliminary experimental results from Tsinghua and SXFEL facilities
- 3. Collaboration on FACET-II positron experiments
- **Expecting timeline** : 1) 2021.12 ; 2) 2022.06 ; 3) 2022.12 ?

Positron Acceleration Scheme 1 (in CDR)

- High efficiency 60%
- Low energy spread ~0.5%
- Small emmitance growth
- Tight tolerance on injection parameters to control transverse instability (beam tilt or offset ~ 0.1µm)

Positron Acceleration Scheme 2 (Stable mode)

e-, shaped & evolved 3-4nC, 45GeV

> e+ 1.2nC, 2/4GeV

Hollow Plasma Channel

e+ 1nC, 45GeV

- Energy efficiency ~ 40%
- Slice energy spread ~1% (to be optimized)
- Tolerable emittance growth
- High tolerance on beam tilt and offset
- debuncher + dechirper to reduce
 energy spread down to 0.2%

Positron Acceleration Scheme 3

- Relative low efficiency ~10% (to be optimized)
- Slice energy spread ~0.2%
- Tolerable emittance growth
- High tolerance on beam tilt and offset

III. Accelerator design and optimization

- Goal : Generation of 15nC (or more) 10GeV shaped bunches for driving HTR PWFA; Generation of positron beam with 1nC charge, 10mm mrad or less normalized emittance, short bunch (~100fs)
- **To Do :** to determine the beam and accelerator parameters, design of gun, Linac, and positron beam line

Tech :

- ✓ Detailed beam line simulations with tolerance check
- ✓ Iteration loop: Booster→plasma injector→Linac→gun
- ✓ Collaboration with FACET-II design

How to Check :

1. Giving detailed design of gun, Linac and positron beam line with tolerance check.

Expecting timeline : 1) 2019.12 (V1) ; 2) 2021.12 (V2, final)

CEPC Plasma Injector beam requirements

Large Charge Photon gun —KEKB, S-band

S band RF gun (highest bunch charge to my knowledge)

- Installed at KEK ATF facility for the X-rays based inverse Compton scattering*
 - S band (2856MHz), 1.6 cell •
 - 5 nC / 15 mm mrad
 - Cs2Te (QE>3%)
 - Laser width (FWHM) 10 ps
 - Ecathode=140 MV/m, 6 MeV @ 15 MW
- SuperKEKB RF gun**
 - S band side coupled structure, 7 cells •
 - **5 nC / 5.5 mm mrad (simulation)**
 - Ir5Ce (QE ~ 2*10⁻⁴) .
 - strong focusing field at cathode ٠
 - Ecathode ~100 MV/m, ~13 MeV @ 20 MW

**T. Natsui et al., proceedings of IPAC 2013, TUOCB103

CsTe

6MeV 1.6 cell gun

Large Charge Photon gun:Argonne, L-band

- Installed in Argonne wakefield accelerator facility*
 - Wakefield acceleration application, high peak current, short beam length (2~5 ps)
 - Drive gun
 - L band 1.5cell RF photocathode gun (1.3 GHz)
 - Single bunch operation 10 pC~100 nC (world record)
 - Bunch train operation, 1~32 bunches/s, with up to 600 nC/s
 - Cs2Te photocathode, diameter > 30 mm (QE~3%)
 - Ecathode > 80 MV/m (14 MW, 8 MeV)
 - Witness gun
 - Mg photocathode
 - 10 pC to 10 nC
 - 20~100 nC, BSA=20 mm, logitudinal Gaussian laser, rms pulse length 2~5 ps (w/o bunch compressor), normalized rms emittance 30~108 mm mrad

*Wei. G et al., NIM A 410.3 (1998). pp. 431-436.

Shaped bunch —Laser Shaping (\checkmark)

- Laser shaping on photocathode + beam line optics
 - · Shaping by adding Gaussian quasi-pulses
 - Gaussian pulse relative delay is given by crystal thickness, relative amplitude can be varied by adjusting crystal angle
 - · Powerful but complicated tuning
 - High bunch charge (~18 nC) means strong space charge effect → difficulty in longitudinal shaping preservation

^{*}G. Loisch et al., NIM A 909, pp. 107-110 (2018)

e- Gun requirement and preliminary design

				Bunch charge (nC) 6.5	В	unch leng	th (ps)
Linac	Gun	Gun type	Bunch	Bunch charge (nC)	Requirement	RF Gun	Compression ratio
Flastrop	Gun1	L-band	Drive	6.5	2	30	~15
Electron	Gun3	L-band	Witness	1.2	0.27	8	~30
Docitron	Gun2	L-band	Drive	18	3	33	~11
POSITION	Gun4	L-band	Witness	5	0.7	13.5	~20

Bunch compressor lattice before main linac

Required (red) and simulated (blue) beam profile

Linac optimization for ideal beams

L-band photocathode rf gun under design.

Finished the preliminary linac design and the end-to-end simulation (e- gun \rightarrow FFS). Beam distribution improved but can not meet the requirements yet.

NEED MORE OPTIMIZATIONS Optimized by Dr. Cai Meng (2020)

Preliminary design for e+ damping ring

	DR V2.0	current
Energy (MeV)	400	400
Circumference (m)	20	29.62
Bunch number	2	2
Bending radius (m)	1.5	1.375
B0 (T)	0.89	0.97
U0 (keV/turn)	5.0	1.65
Damping time x/y/z (ms)	10.7/10.7/5. 3	47.7/48.0/2 4.1
δ0 (%)	0.05	
ε0 (mm.mrad)	5	
Nature σz (mm)	4.4	
Extract oz (mm)	4.4	
εinj (mm.mrad)	2400	
εext x/y (mm.mrad)	62/57	
δinj /δext (%)	0.6 /0.05	
Storage time (ms)	20	

Wiggler parameters	
Dipole strength (T)	4.8
Magnetic period (m)	0.2
Total length (m)	1.5
average βx (m)	1.3

RF parameters	
RF frequency (MHz)	500
RF voltage (MV)	1.5
Energy acceptance by RF(%)	2.1
harmonic	33

Conceptual design was finished, further lattice optimization is ongoing. Error study and correction are needed. Impedance and stability study are also required.

IV. Beam Manipulations

- Goal : Carry out dechirper, hollow plasma channel generation, external injection experiments on Tsinghua and SXFEL facilities, verify their feasibilities
- **To Do** : Prepare and perform systematic experiments on dechirper, hollow plasma channel, and external injection to verify their feasibilities for plasma injector

Tech :

- ✓ Plasma dechirper experiments with uniform and hollow channel plasma
- ✓ External injection from Linac to wakefield accelerator

How to Check :

- 1. Generating long uniform hollow plasma channel
- 2. performing dechirper experiments to reach 0.1% level energy spread
- 3. External injection experiments to show the feasibility of high efficiency high quality staging
- **Expecting timeline** : 1) 2020.6 ; 2) 2020.12; 3) 2021.12

Outline

Background: CEPC/CEPC plasma injector

Preliminary Design v2

Current status: Physics and Technology

Outlook: Future experiments

Current External Injection Experiment

Current Plasma dechirper @ THU lab

PHYSICAL REVIEW LETTERS 122, 204804 (2019)

Phase Space Dynamics of a Plasma Wakefield Dechirper for Energy Spread Reduction

Y. P. Wu,¹ J. F. Hua,^{1,*} Z. Zhou,¹ J. Zhang,¹ S. Liu,¹ B. Peng,¹ Y. Fang,¹ Z. Nie,¹ X. N. Ning,¹ C.-H. Pai,¹ Y. C. Du,¹ W. Lu,^{1,†} C. J. Zhang,² W. B. Mori,² and C. Joshi² ¹Department of Engineering Physics, Tsinghua University, Beijing 100084, China ²University of Los Angeles, Los Angeles, California 90095, USA

(Received 20 January 2019; revised manuscript received 19 April 2019; published 24 May 2019)

Plasma-based accelerators have made impressive progress in recent years. However, the beam energy spread obtained in these accelerators is still at the ~1% level, nearly one order of magnitude larger than what is needed for challenging applications like coherent light sources or colliders. In plasma accelerators, the beam energy spread is mainly dominated by its energy chirp (longitudinally correlated energy spread). Here we demonstrate that when an initially chirped electron beam from a linac with a proper current profile is sent through a low-density plasma structure, the self-wake of the beam can significantly reduce its energy chirp and the overall energy spread. The resolution-limited energy spread measurements show at least a threefold reduction of the beam energy spread from 1.28% to 0.41% FWHM with a dechirping strength of ~1 (MV/m)/(mm pC). Refined time-resolved phase space measurements, combined with high-fidelity three-dimensional particle-in-cell simulations, further indicate the real energy spread.

DOI: 10.1103/PhysRevLett.122.204804

Energy spread reduction down to 0.2% level

AAC 2018, Plenary

- The experimental resolution on energy spread is limited, refined experiments is planned
- The effects on emmittance and slice energy spread needs to be quantified
- Hollow channel dechriper seems to be a better solution

2nd round plasma dechirper experiment

以前的布局: ΔE~0.17MeV 能谱仪屏幕上的光斑尺寸:~mm 升级后的布局: ΔE~0.01MeV 束斑尺寸 < 100μm

Hollow Channel experiment preparation at THU Lab

Estimated Start Time: 2019.12

- Diagnostic system upgrade(1~2 weeks)
 - Assembling quadrupoles (1 week)
 - Online test (1 week)
- Offline test (4 weeks)
 - Optical layout (1 week)
 - Bessel beam profile measurement(1week)
 - Plasma density measurement(2 week)
- Dechirper experiment (8 weeks)
 - Optical layout (2 week)
 - Debugging (3 weeks)
 - Accessing data (3 weeks)

Hollow Channel experiment preparation at THU Lab

清华实验平台束流参数:

横向尺寸 纵向分布 切片能散 束长 电荷量 归一化发射度 能量 能散 等离子体密度	or=40um parabolic 0.01MeV ~1.6ps(FWHM) 100pC 2mm*mrad 46MeV ~0.9MeV (2%) 2.5e14 cm-3	1-5 Kinoform Plate 000 0 0 0 0 0 0 0 0 0 0 0
Hollow channel长度	20cm	
Gas cell for the commer ex	periment	200 00 00 -00 -00 -00 -200 -100 0 10 200 x(µm) -200 -100 0 10 200 x(µm)

Energy spread measure: ~1%→~0.1%

Plasma dechirper & HTR experiment Preparation@ SXFEL

Parameter	Value
Energy	0.8Ge V
Charge	50pC
Emittance	0.8µm
Beam size	10µm
Peak current	2.4kA
Energy Chirp	~8MeV

Dechirper experiment schedule

- First step: Obtaining a stable positively-chirped beam with few percent energy spread
- Second step: Post-processing the beam using a passive dechirper

Experiment preparation @ SXFEL

Slides from Dr. Bo Peng (2020)

Experiment preparation \rightarrow laser system

头	1平,	版	人子	语到	H.
		15	8 m	าJ	0
λ 800 nm	RANGE * Auto	MODE Energy	ZERO Off	DISPLAY Statistics	
Average	Value:		157	mJ	
Maximum	Value:		161	mJ	
RMS Stat	pility:		1.186	%	
PTP Stab	ility:		8.224	%	Running

Amplifier output profile before expande

Pulse compressor efficiency: 72%

8	94 ml			6.51 mJ
		DATA	λ RANGE 800 nm Auto	MODE ZERO DISPLAY DA Energy Off Statistics Acout
800 nm Auto Ener	gy Off Statistics	s AQUISITION	Average Value:	6.39 m]
Average Value:	8.87 mJ		Maximum Value:	6.59 mJ
Maximum Value:	9.20 mJ		Minimum Value:	6.05 mJ
Minimum Value:	8.53 mJ		RMS Stability:	1.253 %
RMS Stability:	1.198 %	Punning	PTP Stability:	8.346 % Running.
PTP Stability:	7.576 %	323 pulses		513 pulse
				? 🥂 🐺
\sim	? /n	W		

Pulse duration

Slides from Dr. Bo Peng (2020)

Experiment preparation \rightarrow gas loop

Summary

- CEPC Plasma Injector is a possible innovative solution to address the low field issue in CEPC booster ring
- A preliminary design for CEPC plasma injector at 45GeV has been carried out, and a step by step plan to verify its feasibility has also been mapped out
- Key experiments are planned to be carried out in future on several available facilities
- It is expected that a conclusion on the feasibilities of CEPC plasma injector should be reached in about 5 years study period