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• SM Higgs self-interaction:
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TWO HIGGS DOUBLET MODEL 

• CP conserving 2HDM:

• In the basis, all the parameters are real. The VEVs are:

Φ2 =
1

2

0

𝑣2
Φ1 =

1

2

0

𝑣1

𝑣 = 𝑣1
2 + 𝑣2

2 = 246 GeV

 There are 8 real degrees of freedom:

3 eaten Goldstones and 5 physical scalars -- 2 charged Higgs, 1 CP-odd neutral Higgs and 2 CP-even neutral Higgs.



TWO HIGGS DOUBLET MODEL

• To see how “alignment without decoupling” arises by CP even Higgs couplings:

𝑔ℎ𝑖𝑉𝑉 =
1

2
𝑔2𝑣𝑖 , 𝑖 = 1,2

• It is possible to rotate to Higgs basis

𝐻1 =
𝐻1
+

𝐻1
0 ≡

𝑣1Φ1 + 𝑣2Φ2

𝑣
𝐻2 =

𝐻2
+

𝐻2
0 ≡

𝑣1Φ2 − 𝑣2Φ1

𝑣



TWO HIGGS DOUBLET MODEL

 “Alignment without decoupling” occurs when Higgs basis = Mass eigen basis

• Mass matrix:

𝑔ℎ𝑖𝑉𝑉 =
1

2
𝑔2𝑣 ∗ 𝑅𝑖1 , 𝑖 = 1,2

𝑅 =

𝑐12𝑐13 … …
𝑐13𝑠12 … …
𝑠13 … …

• Higgs –V-V couplings:



CP VIOLATION THDM

• Counting the number of d.o.f. in CPX 2HDM

• Minimization condition in the Higgs basis:

𝑌1 = −
1

2
𝑍1𝑣

2 𝑌3 = −
1

2
𝑍6𝑣

2

• Free parameters:

൛𝑌2, 𝑍1, 𝑍2, 𝑍3, ሽ𝑍4 ⇒ ൛𝑌2, 𝑍1, 𝑍3, ሽ𝑍4

൛𝑍5, 𝑍6, ሽ𝑍7 ⇒ ൛𝑍5, 𝑍6, ሽRe[𝑍7]

• 𝑍2 Symmetry:

 9 real free parameters!

Since 0 ≤ β ≤ 1
2
π, it follows that

s2β =
2|Z67|

(Z2 − Z1)2 + 4|Z67|2
, c2β =

± (Z2 − Z1)

(Z2 − Z1)2 + 4|Z67|2
, (82)

In part icular,

tanβ =
1− c2β

1+ c2β

, (83)

which demonstrates that tanβ in theΦ-basiscorresponds to cot β in theΦ′ -basis. Moreover,

ei (ξ+ θ23 ) = ± ei (θ23− θ67 ) = ±
|Z67|

Z67e− iθ23
=

Z2 − Z1

2Z67e− iθ23

s2β

c2β

. (84)

Note that eq. (84) is consistent with the result of eq. (75).

Plugging the results of eq. (82) back into eq. (80),

|Z67|(Z2 − Z1) Z1 + Z2 − 2Z34 − 2Re(Z5e
− 2iθ67 ) + (Z2 − Z1)

2 − 4|Z67|
2 Re (Z6 − Z7)e

− iθ67

± iD (Z2 − Z1) Im (Z6 − Z7)e
− iθ67 − 2|Z67| Im(Z5e

− 2iθ67 ) = 0, (85)

where D ≡ (Z2 − Z1)2 + 4|Z67|2. We can use eq. (77) to write e− iθ67 = Z ∗
67/ |Z67|. It then

follows that

(Z2 − Z1) |Z67|
2(Z1 + Z2 − 2Z34) − 2Re(Z ∗

5Z2
67) + (Z2 − Z1)

2 − 4|Z67|
2 |Z6|

2 − |Z7|
2

± 2iD (Z1 − Z2) Im(Z ∗
6Z7) + Im(Z ∗

5Z 2
67) = 0. (86)

Taking the real and imaginary parts of eq. (86) and massaging the real part yields

(Z1 − Z2) Z34|Z67|
2 − Z2|Z6|

2 − Z1|Z7|
2 − (Z1 + Z2) Re(Z ∗

6Z7) + Re(Z ∗
5Z 2

67)

− 2|Z67|
2 |Z6|

2 − |Z7|
2 = 0, (87)

(Z1 − Z2) Im(Z ∗
6Z7) + Im Z ∗

5Z 2
67 = 0. (88)

It is convenient to mult iply eq. (88) by − i and add the result to eq. (87). This yields a

single complex equat ion. Finally, since Z67 ̸= 0 by assumption, one can divide this complex

equat ion by Z ∗
67 and take the complex conjugate of the result to obtain,

(Z1 − Z2) Z34Z
∗
67 − Z1Z

∗
7 − Z2Z

∗
6 + Z ∗

5Z67) − 2Z ∗
67 |Z6|

2 − |Z7|
2 = 0. (89)

ThecaseswhereZ1 = Z2 and/ or Z67 = 0 areeasily treated. First, if Z1 = Z2 and Z67 ̸= 0,

then eqs. (79) and (80) imply that s2β = 1 and c2β = 0, and it follows that Im(Z ∗
5Z 2

67) = 0

21
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FREE PARAMETERS IN CTHDM

• Diagonalize the mass matrix 

• Redefine the mass matrix 

• Alignment Limit:

• Free parameters:

൛𝑚ℎ1 ,𝑚ℎ2 , 𝑚ℎ3 , 𝑚𝐻± , 𝜃12, ϵ, 𝑍3, Re ෨𝑍7 , ሽ𝑣

3

relat ions are, in the approximate alignment limit ,

Re[Z̃5] =
1

v2

⇥
c2✓12

m2
h2
− m2

h3

+✏2 m2
h3

c2
12 + m2

h 2
s2

12 − m2
h2

⇤
, (12)

Im[Z̃5] =
1

v2
s2✓12

✓

1−
✏2

2

◆

m2
h2
− m2

h3
, (13)

Re[Z̃6] =
✏

2v2
s2✓12

m2
h3
− m2

h2
, (14)

Im[Z̃6] =
✏

v2
m2

h2
− m2

h3
c2

12 − m2
h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h 2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are const rained from LHC and EDM con-
st raints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type I I [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tan β is a derived parame-
ter [36] which st rongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan β
in the mh 2

- mh3
plane. For our parameter region of

interest , tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type I I models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type I I models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conser ving L imit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit . This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
const raints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controlsalignment , can now bearbit rary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment int ro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the st ringent EDM limits on CPV also con-
st rain the misalignment , ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exact ly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component . Therefore
EDM limits do not constrain misalignment .

Eqs. (17) and (18) also make it clear that there are two

sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot . When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one isCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to elect roweak gauge
bosons and/ or fermions will not yield any CPV signals.
Nevertheless CPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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FIG. 1: Left: tan β contours in the mh 2
- mh 3

plane. Right: LHC

const raints on |✏| from Higgs couplings with gluons ( g ), vector

bosons ( V ), fermions ( F ) and photons ( γ ), as well as searches

for h2/ 3 ! Z h1 (cyan). Stars denote our benchmark point .
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relat ions are, in the approximate alignment limit ,

Re[Z̃5] =
1

v2

⇥
c2✓12

m2
h2
− m2

h3

+✏2 m2
h3

c2
12 + m2

h2
s2

12 − m2
h2

⇤
, (12)

Im[Z̃5] =
1

v2
s2✓12

✓

1−
✏2

2

◆

m2
h2
− m2

h3
, (13)

Re[Z̃6] =
✏

2v2
s2✓12

m2
h3
− m2

h2
, (14)

Im[Z̃6] =
✏

v2
m2

h2
− m2

h3
c2

12 − m2
h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermionsaswell [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type I I [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tanβ is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tanβ
in the mh2

- mh3
plane. For our parameter region of

interest , tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type II models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type I I models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conserving L imit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit . This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

Onesees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controlsalignment, can now bearbit rary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment int ro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exact ly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component . Therefore
EDM limits do not constrain misalignment .

Eqs. (17) and (18) also make it clear that there are two

sourcesof CPV in 2HDM: Z̃5 and Z̃6 enter into thescalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot . When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and oneisCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to elect roweak gauge
bosons and/ or fermions will not yield any CPV signals.
NeverthelessCPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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FIG. 1: Left: tan β contours in the mh 2
- mh 3

plane. Right: LHC

const raints on |✏| from Higgs couplings with gluons ( g ), vector

bosons ( V ), fermions ( F ) and photons ( γ ), as well as searches

for h2/ 3 ! Z h1 (cyan). Stars denote our benchmark point .
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relat ions are, in the approximate alignment limit ,

Re[Z̃5] =
1

v2

⇥
c2✓12

m2
h2
− m2

h3

+✏2 m2
h3

c2
12 + m2

h2
s2

12 − m2
h2

⇤
, (12)

Im[Z̃5] =
1

v2
s2✓12

✓

1−
✏2

2

◆

m2
h2
− m2

h3
, (13)

Re[Z̃6] =
✏

2v2
s2✓12

m2
h3
− m2

h2
, (14)

Im[Z̃6] =
✏

v2
m2

h2
− m2

h3
c2

12 − m2
h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

chargesto SM fermionsaswell [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tanβ is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tanβ
in the mh2

- mh3
plane. For our parameter region of

interest, tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type II models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conserving Limit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit. This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

Onesees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle✓13,
which controlsalignment, can now bearbitrary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that thereare two

sourcesof CPV in 2HDM: Z̃5 and Z̃6 enter into thescalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot. When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and oneisCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to electroweak gauge
bosons and/ or fermions will not yield any CPV signals.
NeverthelessCPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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relat ions are, in the approximate alignment limit ,
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, (14)

Im[Z̃6] =
✏

v2
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h3
c2

12 − m2
h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermionsaswell [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type I I [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tanβ is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tanβ
in the mh2

- mh3
plane. For our parameter region of

interest , tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type II models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conserving L imit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit . This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

Onesees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle✓13,
which controlsalignment, can now bearbitrary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exact ly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that thereare two

sourcesof CPV in 2HDM: Z̃5 and Z̃6 enter into thescalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot. When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and oneisCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to electroweak gauge
bosons and/ or fermions will not yield any CPV signals.
NeverthelessCPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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relat ions are, in the approximate alignment limit ,

Re[Z̃5] =
1
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⇥
c2✓12
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, (12)
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, (13)
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✏

2v2
s2✓12
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, (14)

Im[Z̃6] =
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v2
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h2
− m2

h3
c2

12 − m2
h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermionsaswell [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tanβ is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tanβ
in the mh2

- mh3
plane. For our parameter region of

interest, tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type II models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conserving L imit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit . This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

Onesees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle✓13,
which controlsalignment, can now bearbit rary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exact ly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that there are two

sourcesof CPV in 2HDM: Z̃5 and Z̃6 enter into thescalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot. When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and oneisCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to electroweak gauge
bosons and/ or fermions will not yield any CPV signals.
NeverthelessCPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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relat ions are, in the approximate alignment limit ,
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, (14)

Im[Z̃6] =
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h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h 2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are const rained from LHC and EDM con-
st raints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermions as well [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type I I [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tan β is a derived parame-
ter [36] which st rongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tan β
in the mh 2

- mh3
plane. For our parameter region of

interest , tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type I I models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type I I models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conser ving L imit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit . This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

One sees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
const raints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controlsalignment , can now bearbit rary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment int ro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the st ringent EDM limits on CPV also con-
st rain the misalignment , ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exact ly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component . Therefore
EDM limits do not constrain misalignment .

Eqs. (17) and (18) also make it clear that there are two

sources of CPV in 2HDM: Z̃5 and Z̃6 enter into the scalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot . When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one isCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to elect roweak gauge
bosons and/ or fermions will not yield any CPV signals.
Nevertheless CPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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relat ions are, in the approximate alignment limit ,
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12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermionsaswell [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type I I [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tanβ is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tanβ
in the mh2

- mh3
plane. For our parameter region of

interest , tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type II models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type I I models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conserving L imit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit . This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

Onesees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controlsalignment, can now bearbit rary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment int ro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exact ly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component . Therefore
EDM limits do not constrain misalignment .

Eqs. (17) and (18) also make it clear that there are two

sourcesof CPV in 2HDM: Z̃5 and Z̃6 enter into thescalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot . When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and oneisCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to elect roweak gauge
bosons and/ or fermions will not yield any CPV signals.
NeverthelessCPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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3

relat ions are, in the approximate alignment limit ,

Re[Z̃5] =
1

v2

⇥
c2✓12

m2
h2
− m2

h3

+✏2 m2
h3

c2
12 + m2

h2
s2

12 − m2
h2

⇤
, (12)

Im[Z̃5] =
1

v2
s2✓12

✓

1−
✏2

2

◆

m2
h2
− m2

h3
, (13)

Re[Z̃6] =
✏

2v2
s2✓12

m2
h3
− m2

h2
, (14)

Im[Z̃6] =
✏

v2
m2

h2
− m2

h3
c2

12 − m2
h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

chargesto SM fermionsaswell [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tanβ is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tanβ
in the mh2

- mh3
plane. For our parameter region of

interest, tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type II models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conserving Limit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit. This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

Onesees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle✓13,
which controlsalignment, can now bearbitrary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exactly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that thereare two

sourcesof CPV in 2HDM: Z̃5 and Z̃6 enter into thescalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot. When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and oneisCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to electroweak gauge
bosons and/ or fermions will not yield any CPV signals.
NeverthelessCPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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• Relationships between 𝑍𝑖and mixing angles:

3

relat ions are, in the approximate alignment limit ,

Re[Z̃5] =
1

v2

⇥
c2✓12

m2
h2
− m2

h3

+✏2 m2
h3

c2
12 + m2

h2
s2

12 − m2
h2

⇤
, (12)

Im[Z̃5] =
1

v2
s2✓12

✓

1−
✏2

2

◆

m2
h2
− m2

h3
, (13)

Re[Z̃6] =
✏

2v2
s2✓12

m2
h3
− m2

h2
, (14)

Im[Z̃6] =
✏

v2
m2

h2
− m2

h3
c2

12 − m2
h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

charges to SM fermionsaswell [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type I I [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tanβ is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tanβ
in the mh2

- mh3
plane. For our parameter region of

interest , tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type II models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type I I models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conserving L imit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit . This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

Onesees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle ✓13,
which controlsalignment , can now bearbit rary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exact ly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component . Therefore
EDM limits do not constrain misalignment .

Eqs. (17) and (18) also make it clear that there are two

sourcesof CPV in 2HDM: Z̃5 and Z̃6 enter into thescalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot . When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and one isCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to electroweak gauge
bosons and/ or fermions will not yield any CPV signals.
NeverthelessCPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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CP CONSERVATIVE AND ALIGNMENT LIMIT CTHDM

 We are interested in the interplay between the Higgs alignment and CPX in

C2HDM. There are two important experimental observations:

• The 125 GeV Higgs is SM-like. (𝑚ℎ1 = 125GeV)

• EDM places stringent constraints on CPX.

 These motivates considering the small departures from

• The exact alignment limit. (Mixing among 3 Higgs)

• The exact CP-conserving limit. (Im 𝑍7 ~0, Re 𝑍7 ~0, 𝜃23 ≠ 0,
𝜋

2
)



OTHER PARAMETERS DEPENDENCE  

Im ෨𝑍7 ≃ − 1 +
Re ෨𝑍7

Re ෨𝑍5 𝑍3451
Im ෨𝑍6𝑍2 ≃ 𝑍1 +

(Re ෨𝑍7 )
2

𝑍3451
tan 2𝛽 = ±

2|𝑍67|

𝑍2 − 𝑍1
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Figure 6: Excluded parameter space regions in the mmod−
h

scenario (left) and in the M 125
h ( c̃ )

scenario (right). The grey area delimited by the solid black line and markers represents the

observed excluded region. The dashed black line and the green (yellow) regions represent

the median expected exclusion regions and one (two) standard deviations from the expected

median, respectively. The region below the red line is excluded assuming that the observed

neutral Higgsboson is the light CP-even 2HDM Higgsboson with amassof 125± 3GeV, where

the uncertainty is the theoretical uncertainty in the mass calculation.
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 We choose tan𝛽 > 1



OBLIQUE PARAMETERS 

• The analysis of precision electroweak data get:

• In the alignment Limit:

𝑆 ≃
𝑚ℎ2

2 +𝑚ℎ3
2 − 2𝑚𝐻±

2

24𝜋Λ2

𝑇 ≃
(𝑚𝐻±

2 −𝑚ℎ2
2 )(𝑚𝐻±

2 −𝑚ℎ3
2 )

48𝜋𝑠𝑊
2 𝑚𝑊

2 𝑚ℎ3
2

 We choose  𝑚𝐻±
2 ~𝑚ℎ2

2

H.Haber, D.O’Neil Phys.Rev. D83 (2011) 055017



ELECTRON EDM CONSTRAINT

• Fermion contributions:

∝

• Higgs boson-loop contributions: 

• gauge-loop contributions 



ELECTRON EDM CONSTRAINT

ቄ𝑚ℎ3 , 𝜃12 =
𝜋

2
, ϵ, 𝑍3, ൟRe ෨𝑍7 , 𝑚ℎ2 = 𝑚𝐻± +𝜃23



COLLIDER PHENOMENOLOGY 

• Branching ratios for benchmark points:

4
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FIG. 2: Contours for eEDM (de) in ✓23 vs. |✏| (left ), and
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smoking gun signals for CPV in Higgs to Higgs decays.

LH C/ ED M Const raint s – In the right panel of Fig. 1

we show the LHC constraints on |✏| and Re[Z̃7]. We
fist fix the charged Higgs mass equal to h2 due to the
precision measurement of the oblique parameters S, T
and U[50] We fix mh3

= 500 GeV, mh2
= mH ± = 280

GeV, mH ± = 280 GeV, Z3 = 0.1 and ✓23 = 0.7. We
further chose ✓12 = ⇡ / 2 so that h3 is most ly CP-odd.
For Higgs coupling measurements we use recent results
from both ATLAS[51, 52] and CMS[53], which constrain

i = gmeasured
i / gSM

i , i = g, V, F, γ. Blue, green, red and
orange shaded regions correspond to regions excluded by
constraints coming from g, V , F and γ , respect ively.
The cyan shaded region is excluded due to searches for
h2/ 3 ! h1Z [54–56]. As can be seen, the i and the
h1Z searches depend most ly on |✏| and only very mildly

on Re[Z̃7]. The charged Higgs decaying to tb searches

[57] provide the stronge constraint , requiring Re[Z̃7] ≥ 2.
The constraint on the h2 decaying to h1h1 for mh2

=
280 GeV is σ(h2 ! h1h1) < 1.7pb.[58], which is not
constraining our bench mark point . Wealso checked that
LHC limits on heavy Higgs decays to t t̄ final states [59]
are not constraining for our benchmark.

For EDM wefocuson theconstraints from theelectron
EDM (eEDM) de [30, 60, 61] which are stronger than
those from the neutron EDM [62]. In part icular, using
the results in Refs. [16, 63–66] we consider contribut ions
from the Barr-Zee diagrams [67]. There are three contri-
but ions for the eEDM [16]. All of them depend on ✏, ✓23,
✓12 and theHiggs masses. Addit ionally thecontribut ions
from the gauge bosons’ loops also depend on Re[Z̃7]. In
Fig. 2 contours for the eEDM and the experimental con-
straints on the most relevant parameters are shown: ✓23

vs. ✏(left ) and Re[Z̃7] (right). The solid red line denotes
de = 0, while the dashed red lines bound the experimen-
tally allowed region |de| < 1.1⇥10− 29e cm (90%CL) [30].
We fix the mass spectrum as for the LHC constraints,
and again choose ✓12 = ⇡

2
. While not shown, EDM

constraints are minimized when the masses are degen-
erate [36]. However, regardless of the mass spectrum,
eEDM constraints severely limit the CPV components of
the mass eigenstates. This can be seen from the lim-
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FIG. 3: Branching rat ios for h3 (left ) and h2 (right ) for the
listed parameters. Grey dashed lines denote mass spect ra in

tension with eEDM constraints.

its on de t racking the behavior expected from our anal-
ysis of CPC1 and CPC2. Small values of ✓23 (CPC1
limit ) can only be obtained for small values of |✏|, but
for |✓23| ⇠ ⇡ / 2 (CPC2), ✏is e↵ect ively unconstrained.

Further, small values of Re[Z̃7] are obtained for values
of ✓23 ⇠⇡ / 2 (CPC2 limit ), but larger values are allowed
as✓23 decreases. Addit ionally, we see that in regions far
from CPC1 and CPC2, de can be 0 due to cancellat ions
between various contribut ions.
Coll ider Phenomenology – With thegenerically small
CPV components allowed in the mass eigenstates due to
experimental constraints, direct ly probing theCP nature
of the mass eigenstates will be challenging. However, the
decay (h3 ! h2h1) could provide a smoking gun signa-
ture for CPV in 2HDMs. If kinemat ically accessible, this
signal is maximized for maximum possible misalignment
✏and largest possible Re[Z̃7] (cf. Eq. (16)), as allowed
from LHC and where eEDM constraints are minimized.
Further, we are interested in the possibility of both ad-
dit ional Higgs bosons being within reach of the LHC.
Hence we choose the following benchmark point for col-
lider phenomenology:

{ Z3, Re[Z̃7],✓12,✓23,✏} = { 0.1, 3, ⇡ / 2, 0.7,− 0.12} ,

{ mh3
, mh2

, mH ± } = { 500, 280, 280} GeV . (21)

With these parameters, h3 is most ly CP-odd, while h2

and h1 are mostly CP-even.
Fig. 3 shows thebranching rat ios of h3 (left panel) and

h2 (right panel). Grey hatching denotes mass spectra in
tension with eEDM constraints. We see for our bench-
mark BR(h3 ! h2h1) ⇠1%, with h2 primarily decaying
into h1h1. The main product ion channel for both h2 and
h3 is gluon fusion. At the

p
s = 13 TeV LHC [68]:

σ(gg ! h2) ' 1.7 pb , σ(gg ! h3) ' 0.36 pb .
(22)

The large product ion rate for h3 stems from its mostly
CP-odd nature. Therefore, for an integrated luminosity
of L = 3000 fb− 1, we will have approximately 104 CPV
triple Higgs events (h3 ! h2h1 ! h1h1h1). This signa-
ture has not been searched for at the LHC. In models
with addit ional CP-even scalars beyond the 2HDM, such

3

relat ions are, in the approximate alignment limit ,

Re[Z̃5] =
1

v2

⇥
c2✓12

m2
h2
− m2

h3

+✏2 m2
h3

c2
12 + m2

h2
s2

12 − m2
h2

⇤
, (12)

Im[Z̃5] =
1

v2
s2✓12

✓

1−
✏2

2

◆

m2
h2
− m2

h3
, (13)

Re[Z̃6] =
✏

2v2
s2✓12

m2
h3
− m2

h2
, (14)

Im[Z̃6] =
✏

v2
m2

h2
− m2

h3
c2

12 − m2
h1

s2
12 , (15)

gh1 h2 h3
= ✏v Re[Z̃7e− 2i✓12 ] . (16)

From the above we see that the mass split t ing between
h3 and h2 is determined at leading order in ✏by ∆m2

23 ⌘
(m2

h3
− m2

h2
) = v2|Z5|. Therefore, in general, an O(v2)

split t ing can be achieved with |Z5| ⇠ O(1). Further, the
CPV coupling gh1 h2 h3

is non-zero away from exact align-
ment and for non-zero Z7. Hence the decay (h3 ! h2h1)
may be achieved for reasonable choices of parameters,
which however are constrained from LHC and EDM con-
straints, as will be discussed later.

In the Z2 basis the Yukawa interact ions must also re-
spect the Z2 invariance, which necessitates assigning Z2

chargesto SM fermionsaswell [43, 44]. Two dist inct pos-
sibilit ies exist in the literature, leading to type I [45, 46]
and type II [46, 47] models which di↵er by interchanging
tanβ with cot β. Important ly tanβ is a derived parame-
ter [36] which strongly depends on the mass spectrum.
In the left panel of Fig. 1 we show contours of tanβ
in the mh2

- mh3
plane. For our parameter region of

interest , tanβ ⇠ 1 except when mh2
and mh3

are de-
generate. For concreteness we focus on Type II models
with tanβ ⇠ O(1). However since the dist inct ion be-
tween Type I and Type II models here is minimal, our
conclusions apply to Type I models as well.
T wo CP-conserving Limit s – The condit ion for CP
invariance in Eq. (5) can be realized as follows [6, 36]:

CPC1 : Im[Z̃5] = Im[Z̃6] = Im[Z̃7] = 0 , (17)

CPC2 : Im[Z̃5] = Re[Z̃6] = Re[Z̃7] = 0 . (18)

In CPC1, fM 2 in Eq. (8) is block-diagonal: fM 2
13 =

fM 2
23 = 0, in which case φ0

1 and φ̃0
2 defined in Eq. (10)

are CP-even and can mix in general, whereas φ̃0
3 is CP-

odd. This can be achieved by ✓23 = 0 so that φ̃0
3 = a0

in Eq. (10). Further, neither of the two CP-even states
can mix with the CP-odd state. From Eq. (9) we see✓13

controls the mixing between φ0
1 and φ̃0

3, which implies
✓13 = ⇡ / 2 in the CP-conserving limit . This coincides
with the exact alignment limit ✏= 0. The mixing be-
tween φ̃0

2 and φ̃0
3 is dictated by ✓12 and can be removed

by ✓12 = 0 or ⇡ / 2, which corresponds to h3 = a0 or
h2 = a0, respect ively. Therefore, CPC1 is reached by

✓13 = 0 , ✓23 = 0 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (19)

Onesees from Eqs. (13) and (15) that Im[Z̃5] = Im[Z̃6] =
0 under the choice of parameters in Eq. (19). It can

be further checked that fermionic couplings of the mass
eigenstates follow from their CP-property and the EDM
constraints vanish as expected [48].

In CPC2, fM 2
12 = fM 2

23 = 0 and fM 2 is again block-

diagonal. In this case φ0
1 can mix with φ̃0

3, since they

are both CP-even. The CP-odd state is φ̃0
2. Referring

back to Eq. (10) we see that this requires ✓23 = ⇡ / 2.
In contrast to the CPC1 scenario, the mixing angle✓13,
which controlsalignment, can now bearbit rary. Turning-
o↵ mixing between φ̃0

2 and φ̃0
3 again implies ✓12 = 0 or

⇡ / 2. Hence CPC2 is represented by:

✓23 = ⇡ / 2 , ✓12 = { 0, ⇡ / 2} , Im[Z7] = 0 . (20)

Again one can check that Im[Z̃5] = Re[Z̃6] = 0 and cou-
plings of the mass eigenstates to the fermions behave as
expected from their CP quantum numbers.

There is an important dist inct ion between these two
scenarios. In CPC1 the CP-conserving limit coincides
with the alignment limit because misalignment intro-
duces a small CP-odd component to the SM-like Higgs
boson. Then the stringent EDM limits on CPV also con-
strain the misalignment, ✏⇠ O(10− 4), thereby forcing
the 125 GeV Higgs to be almost exact ly SM-like [48].
This is consistent with the findings in Refs. [25, 26, 49].
To the contrary, in CPC2 the SM-like Higgs boson only
contains a CP-even non-SM-like component. Therefore
EDM limits do not constrain misalignment.

Eqs. (17) and (18) also make it clear that thereare two

sourcesof CPV in 2HDM: Z̃5 and Z̃6 enter into thescalar
mass-squared matrix in Eq. (8), while Z̃7 doesnot. When

Im[Z̃5] = Im[Z̃6] = 0 or Im[Z̃5] = Re[Z̃6] = 0, there
is no CPV in the scalar mixing matrix and each mass
eigenstate hi is also a CP-eigenstate: two are CP-even
and oneisCP-odd. In thiscase, measurementsof angular
correlat ions in the scalar couplings to electroweak gauge
bosons and/ or fermions will not yield any CPV signals.
NeverthelessCPV could st ill bepresent through non-zero
Re[Z̃7] or Im[Z̃7] and will manifest through the decays of
Higgsbosons. Given theseconsiderat ions, wewill analyze
parameter regions close to the CPC2 limit to highlight
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SUMMARY

• THERE IS AN INTERESTING INTERPLAY BETWEEN ALIGNMENT LIMIT AND CP CONSERVING LIMIT 

IN C2HDM. IN ONE CASE, THE ALIGNMENT LIMIT IS IDENTICAL WITH THE CP-LIMIT, WHILE IN 

THE OTHER CASE THEY ARE INDEPENDENT.

• THERE IS A SMOKING-GUN SIGNAL FOR CP VIOLATION AT THE LHC IN C2HDM, WITHOUT 

RECOURSE TO ANGULAR DISTRIBUTIONS, BY SEARCHING FOR
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FIG. 2: Contours for eEDM (de) in ✓23 vs. |✏| (left ), and

Re[Z̃7] (right ) plane. Only regions within the dashed red lines are

experimentally allowed |de| < 1.1⇥10− 29e cm (90%CL) [30]. Thick

red linedenotes |de| = 0. Notedi↵erent scales for the left / right axes

and legends. Stars denote our benchmark point .

smoking gun signals for CPV in Higgs to Higgs decays.

LHC/ EDM Const raint s – In the right panel of Fig. 1

we show the LHC constraints on |✏| and Re[Z̃7]. We
fist fix the charged Higgs mass equal to h2 due to the
precision measurement of the oblique parameters S, T
and U[50] We fix mh3

= 500 GeV, mh2
= mH ± = 280

GeV, mH ± = 280 GeV, Z3 = 0.1 and ✓23 = 0.7. We
further chose ✓12 = ⇡ / 2 so that h3 is mostly CP-odd.
For Higgs coupling measurements we use recent results
from both ATLAS[51, 52] and CMS[53], which constrain

i = gmeasured
i / gSM

i , i = g, V, F,γ. Blue, green, red and
orange shaded regions correspond to regions excluded by
constraintscoming from g, V , F and γ , respectively.
The cyan shaded region is excluded due to searches for
h2/ 3 ! h1Z [54–56]. As can be seen, the i and the
h1Z searches depend mostly on |✏| and only very mildly

on Re[Z̃7]. The charged Higgs decaying to tb searches

[57] provide thestrongeconstraint, requiring Re[Z̃7] ≥ 2.
The constraint on the h2 decaying to h1h1 for mh2

=
280 GeV is σ(h2 ! h1h1) < 1.7pb.[58], which is not
constraining our bench mark point. Wealso checked that
LHC limits on heavy Higgs decays to tt̄ final states [59]
are not constraining for our benchmark.

For EDM wefocuson theconstraints from theelectron
EDM (eEDM) de [30, 60, 61] which are stronger than
those from the neutron EDM [62]. In part icular, using
the results in Refs. [16, 63–66] we consider contributions
from the Barr-Zee diagrams [67]. There are three contri-
butions for the eEDM [16]. All of them depend on✏, ✓23,
✓12 and theHiggsmasses. Addit ionally thecontributions
from the gauge bosons’ loops also depend on Re[Z̃7]. In
Fig. 2 contours for the eEDM and the experimental con-
straints on the most relevant parameters are shown: ✓23

vs. ✏(left) and Re[Z̃7] (right). Thesolid red line denotes
de = 0, while the dashed red lines bound the experimen-
tally allowed region |de| < 1.1⇥10− 29e cm (90%CL) [30].
We fix the mass spectrum as for the LHC constraints,
and again choose ✓12 = ⇡

2
. While not shown, EDM

constraints are minimized when the masses are degen-
erate [36]. However, regardless of the mass spectrum,
eEDM constraints severely limit theCPV components of
the mass eigenstates. This can be seen from the lim-
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FIG. 3: Branching rat ios for h3 (left ) and h2 (right) for the

listed parameters. Grey dashed lines denote mass spectra in
tension with eEDM constraints.

its on de tracking the behavior expected from our anal-
ysis of CPC1 and CPC2. Small values of ✓23 (CPC1
limit) can only be obtained for small values of |✏|, but
for |✓23| ⇠ ⇡ / 2 (CPC2), ✏is e↵ectively unconstrained.

Further, small values of Re[Z̃7] are obtained for values
of ✓23 ⇠⇡ / 2 (CPC2 limit), but larger values are allowed
as✓23 decreases. Addit ionally, we see that in regions far
from CPC1 and CPC2, de can be 0 due to cancellat ions
between various contributions.
Collider Phenomenology –With thegenerically small
CPV components allowed in the mass eigenstates due to
experimental constraints, direct ly probing theCP nature
of themasseigenstates will bechallenging. However, the
decay (h3 ! h2h1) could provide a smoking gun signa-
ture for CPV in 2HDMs. If kinematically accessible, this
signal is maximized for maximum possible misalignment
✏and largest possible Re[Z̃7] (cf. Eq. (16)), as allowed
from LHC and where eEDM constraints are minimized.
Further, we are interested in the possibility of both ad-
dit ional Higgs bosons being within reach of the LHC.
Hence we choose the following benchmark point for col-
lider phenomenology:

{ Z3, Re[Z̃7],✓12,✓23,✏} = { 0.1, 3, ⇡ / 2, 0.7,−0.12} ,

{ mh3
, mh2

, mH ± } = {500, 280, 280} GeV . (21)

With these parameters, h3 is mostly CP-odd, while h2

and h1 are mostly CP-even.
Fig. 3 shows thebranching rat iosof h3 (left panel) and

h2 (right panel). Grey hatching denotes mass spectra in
tension with eEDM constraints. We see for our bench-
mark BR(h3 ! h2h1) ⇠1%, with h2 primarily decaying
into h1h1. The main production channel for both h2 and
h3 is gluon fusion. At the

p
s = 13 TeV LHC [68]:

σ(gg ! h2) ' 1.7 pb , σ(gg ! h3) ' 0.36 pb .
(22)

The large production rate for h3 stems from its mostly
CP-odd nature. Therefore, for an integrated luminosity
of L = 3000 fb− 1, we will have approximately 104 CPV
triple Higgs events (h3 ! h2h1 ! h1h1h1). This signa-
ture has not been searched for at the LHC. In models
with addit ional CP-even scalars beyond the2HDM, such


