Particle identification from timing detector

Zhijun Liang IHEP, Chinese Academy of Sciences

Introduction

- \triangleright Fcc-ee/CEPC will produce Tera Z ($\sim 10^{12}$) Z boson at Z pole \rightarrow Rich flavor physics
- > Gas detector is powerful for particle identification (PID)
 - \rightarrow good K/ π separation up to 100GeV
 - \rightarrow Challenge: 0.5-1.5 GeV for K/ π separation, large fraction of Kaon in that region
- > Timing detector is complementary to gas detector
- > CEPC International Advisory Committee: one of the key recommendations in 2019
- → Precision timing detector should be determined as a matter of urgency

PID performance IDEAL drift Chamber

Kaon momentum distribution at Z pole

Timing detector in Detector concept

- > Take CEPC as example, timing detector was not included in CDR layout
- > Timing detector can be placed between tracker and calorimeter

Baseline detector ILD-like (3 Tesla)

Low magnetic field concept (2 Tesla)

Full silicon tracker concept

also proposed for FCC-ee

CEPC plans for

2 interaction points

Technology for timing detector

- > Silicon based timing detector (LGAD)
- > Belle II time of flight detector: TOP
- >TORCH
- > Multigap resistive plate chamber (mRPC)

Silicon timing detector: ATLAS and CMS

- **▶** Both ATLAS and CMS aim to be 10 m² level silicon timing detector
- → Both projects approved by CERN LHCC, to be built by 2026
- → Time resolution per track: 30~50 ps
- → Granularity: 1.3 × 1.3 mm
- \rightarrow Radiation hardness: ~fluence: 2.5 × 10¹⁵ N_{eq}/cm², total ionzation dose: 200 Mrad

ATLAS: high granularity timing detector

TDR: https://cds.cern.ch/record/2719855/

TDR: https://cds.cern.ch/record/2667167

Low-Gain-Avalanche-detector (LGAD)

- > LGAD is optimized for charge particle timing measurements
- > Add an internal gain layer for charge multiplication
- > Compared to SiPM, LGAD has lower gain (20-30)
- → High S/B, no self-triggering, optimized for timing
- high electric field, high drift velocity, thin active layer → fast timing

Manufacturers of LGAD

CNM (Spain), HPK (Japan), FBK (Italy), BNL (USA), NDL (China), IME (China)

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNoise}^2 + \sigma_{Distortion}^2 + \sigma_{Jitter}^2 + \sigma_{TDC}^2$$

$$\sigma_{jitter}^2 = \left(\frac{t_{rise}}{S/N}\right)^2$$

Reduce Jitter term

- > Need gain to increase S/N
- > Need thin detector to decrease trise

CEPC silicon timing detector Concept

- > Target time resolution:
- \rightarrow Aim for 20 pico-second(ps if the cost is under control (\sim 10 M CHF)
- > Expected Timing detector performance (assuming 20ps resolution)
- \rightarrow More than 3σ K/ π separation: 0-3.5GeV
- \rightarrow More than 3σ K/p separation: 0-5 GeV

PID performance of CEPC TOF

PID performance IDEAL drift Chamber

CEPC silicon timing detector: R & D status

- > IHEP and Beijing Normal U. developed IHEP-NDL LGAD sensors
- → Time resolution reach 30 pico-second(ps) per hit
- → Similar performance compared to HPK sensors before radiation
- > IHEP and Institute of micro-electronics (IME) developed IHEP-IME sensors
- > -> IHEP team designed, IME fabricated, ~30ps time resolution

IHEP-NDL sensor

IHEP-IME sensors 8 inch wafer

R & D status of ATLAS HGTD detector

- > Mini-Detector modules prototyped
- > LGAD bonded bumped with fast readout ASIC
- > Time resolution: 45ps (from test beam)
- > Area: 6.5mm × 6.5mm (mini-modules)
- 2cm × 4cm (full size modules, to be built in 2021)

HGTD mini-module by IHEP

Belle II time of flight detector: TOP

- > Time of Propagation subdetector can be used for PID
- ➤ New MCP-PMTs for sub-50ps photon detection
- ➤ A 2-dimensional PDF can be constructed based on detection time and detection position of Cherenkov photons.
- ➤ The different Cherenkov angle for photons from kaons leads to a later arrival time than for photons from pions.

TORCH: a novel concept for PID

- > LHCb proposed TORCH(Time Of internally Reflected Cherenkov light)
- > Cherenkov light produced in a thin quartz plate propagates to the edge by total internal reflection focused via cylindrical lens to fast photon detectors.
- ➤ Photon detection requires to have angular resolution of ~1 mrad with timing resolution of 70 ps/photon and 10-15 ps/track with 30 photons.

TORCH (2)

- > TORCH proposed for Fcc-ee by R. Forty.
- > -> between TPC and calorimeter
- \gt 24 barrel modules 96 x 220 cm² = 50 m²
- > 12 modules for each endcap ~ 10 m²

TORCH for full-silicon detector concept

- > Challenge to perform particle identification in full silicon concept
 - -> Silicon timing detector alone can be cover medium/high energy range
- > Torch for CEPC in full silicon concept proposed by Weimin Yao
- → Replacing outer strip layers with TORCH

https://indico.cern.ch/event/820586/contributions/3551243/attachments/1908931/3154693/cepc_tracking_chicag62019.pdf

Multi-gap RPC at ALICE

- > Multigap resistive plate chamber (mRPC)
- -> Easy to build, easily segmented
- →Adding more gaps in RPC → improve time resolution (~50ps for ALICE mRPC)
- → Challenge: to handle High continuous flux

Performance of the ALICE TOF MRPC strips

Summary

- > Timing detector is essential to PID in flavor physics Fcc-ee/CEPC
- > Especially at low energy range around 1GeV
- > Silicon timing detector is making progress very rapidly
- > Expect to have the first implementation in ATLAS/CMS in 2026.

- > TORCH proposed in Fcc-ee/CEPC
- > Can be integrated in many detector concepts
- > Extremely important for for full silicon concept
- > mRPC have proven their validity in several systems.
- > Can provide with the required resolution (50 ps)
- > Time of propagation of Cherenkov light represent a alternative to mRPC.