RICH detectors and alternative/complementary options for PID at colliders

Thank you to

all the colleagues who kindly provided information

all the colleagues whose material (paper, slides) I used

Of course, all the mistakes and biases are mine !

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

1

ABOUT RICHes, A QUICK REMINDER

- <u>LHCb</u> not a classical collider setup: forward angles one arm spectrometer
- DELPHI, SLD-CRID the only examples in contexts of much lower *L* than what expected in the next generation colliders

EIC

EIC (high performance DIRC)

From this quick analysis

- Up-to-date options for <u>low momenta</u> available (DIRC-like, aerogel) ↔ limited space required
- Problematic approach <u>for high momenta</u> ↔ space demanding: the development of a <u>compact RICH concept</u> required

Addressing the <u>photon</u> <u>detector</u> issues

(common to high and low momenta)

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

ABOUT SINGLE PHOTON DETECTORS

3 families (grouping by technologies)

Vacuum based PDs

- PMTS (SELEX, Hermes, BaBar DIRC, NA62)
- MAPMTs (HeraB, COMPASS RICH-1 forward region, LHCb upgrade, GlueX, CLASS12, Panda forward-RICH)
- Hybride PMTs (LHCb)
- HAPD (BELLE II aerogel-RICH)
- MCP-PMT (BELLE II barrel: TOP detector)
- LAPPDs large size MCP-PMTs, development ongoing

Gaseous PDs

- Organic vapours in practice only TMAE and TEA (Delphi, OMEGA, SLD CRID, CLEO III, ...)
- Csl and open geometry (HADES, COMPASS, ALICE, STAR, JLAB-HALL A)
- Csl and MPGDs (PHENIX HBD, no imaging, <u>NEW:</u> COMPASS RICH-1 2016-17 upgrade)

SiPMs

- Silicon PMs (not used so far in any experiment)
 - radiation hardness , intrinsic noise
 - cooling to moderate them → more material, complexity

PMTs & MAGNETIC FIELD

A FEW WORDS ABOUT SINGLE PHOTON DETECTORS

Time resolution (σ)	Effective QE range
	Vacuum-based devices:
PMTs, MAPMTs >/~ 0.3 ns	λ > 300, 250, 200 nm
 MCP-PMT <100 ps 	[also solar-blind]
 SiPM <100 ps 	
 MWPCs >/~ 20 - 400 ns FE dependent, ballistic deficit implications (*) MPGDs ~ 7-10 ns (INTRINSIC) (*) COMPASS - Gassiplex 400 ns, ballistic def. 50% 	 Gaseous devices (Csl): λ < 205 nm
AF V25 20115, Dallistic del. 25 /6	
Operation in magnetic field	COSTS
PMTs, MAPMTs, HPMTs NO	Gaseous ^(*) - \$ (0.2-0.4 M / m ²)
	MAPMTs - \$\$ (0.5-1 M / m ²)
MCP-PMT ~YES	SiPM - \$\$ (0.8-1 M / m ²)
MWPCs, MPGDs YES	MCP-PMT - \$\$\$ (???)
SiPM YES	LAPPD - \$\$ (0.8-1 M / m ²)
	(*) <u>UV:</u> gas system, mirrors more DEMANDING →
HEP 2021, 14-21/1/2021 RICH & be	SIIVIA DALLA TORRE

MORE ABOUT SINGLE PHOTON DETECTORS

cont.

Any source of noise compromises PID efficiency and purity

Here shown making use of LHCb experience

Istituto Nazionale di Fisica Nucleare

LAPPD, an OPTION ?

Window and photocathode Indium Top Seal Glass spacer # Top MCF Glass spacer #2 Bottom MCP Glass spacer #3 Glass sidewall Bottom anode plate with conductive strips penetrating sea

Table 1 - LAPPD Pricing Schedule (05-18-2019)

Sales

Unit Price

Sold

500

750

1000

LAPPD #25 Performance Summary

24,414

23,021

21,972

ć.

A thin metal DC ground plane is deposited onto the inside of the detector.

MINOT, Pisa Meeting 2018

LAPPD

B.W. Adams et al., arXiv:1603.01843

(20x20 cm²) MCP-PMTs

User-designed readout elements

HEP 2021, 14-21/1/2021

12,206,898

17,265,691

\$ 21,972,132

HEP 2021, 14-21/1/2021

M. Calvi a,b, P. Carniti a,b,*, C. Gotti a,b,*, C. Matteuzzi a, G. Pessina a

A FEW MORE WORDS ABOUT SiPMs 2/2

A dedicated effort for application at EIC by a cluster of INFN groups

- SiPMs from different producers mounted on a RICH prototype
 - Part as received
 - Part irradiated
 - Part irradiated and annealing cycle
- \rightarrow Performance in a test beam
- Coupled to specific FE r-o:
 - ALCOR, developed for DarkSide

multiple manufacturers

differences in architecture, V_{bd} and electric fields keep <u>Hamamatsu</u>, leading producer of photosensors keep <u>Broadcom</u>, possible future R&D within FBK-INFN collaboration agreement choosebetween Ketek (25/15 μm, cheaper) and <u>SensL</u> (BO/20 μm, timing) feree

RICHes The low momentum sector

AEROGEL in CHERENKOV IMAGING, so far 1/2

AREOGEL in CHERENKOV IMAGING, so far 2/2

RICH & beyond

Silvia DALLA TORRE

18

ABOUT AEROGEL ITSELF

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

19

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

20

DIRC

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

21

MORE WITH FINE TIME RESOLUTION PDs

TORCH (LHCb upgrade): a DIRC for <u>TOF</u> measurements using MCP-PMTs

RICHes for high momenta

Silvia DALLA TORRE

25

DELPHI BARREL RICH

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

26

<u>High-p</u> RICH & beyond at colliders, WHICH CHALLENGES ?

- What is needed & related challenges:
- Gaseous radiator Short radiator length in spite of limited Ch. photon yield
 → the COMPACT RICH concept
- Focusing system (mirrors) Light support and substrate
- Wide phase space acceptance Extended systems complemented by low-p RICH & beyond
- Detector in B-field region Photon detectors effectively operating in B-field
- Limited number of active RICHES for high p RICH & beyond world-wide
 - COMPASS
 - LHCb (2-counter system)
 - NA62

Wide phase space acceptance

small phase space acceptance

- WHERE NEEDED?
 - An absolute must at the EIC, now an approved project
 - A desired option in circular e+e- colliders

LESSONS FROM HIGH p RICHes IN OPERATION

LESSONS FROM HIGH p RICHes IN OPERATION

<u>Options</u> for RICH <u>at high p</u> in classical collider setups

"STANDARD" APPROCH

1 m-long radiator and visible light PDs

```
PDs: LAPPDs or SiPMs
```

```
C<sub>4</sub>F<sub>10</sub> (n = 1.0015, θ_max: 55 mrad)
```

- π threshold : 2.5 GeV/c
- K threshold : 9.0 GeV/c
- n_det.ph.s (β=1) / 1m : ~ 20
- To exploit PID up to 50 GeV/c : σ_C_ph < 1.5 mrad (vis. range)</p>
- CF_4 (n = 1.0005, θ_{max} : 32 mrad)
 - π threshold : 4.4 GeV/c
 - K threshold : 15.6 GeV/c
 - n_det.ph.s (β =1) / 1m : ~ 10
 - to exploit PID up > 60 GeV/c : σ_C_ph < 0.7 mrad</p>

"WINDOWLESS" RICH

- 1 m-long radiator and gaseous PD
- Increased n. of detected photons with a wavelength range around 120 nm
 - 10 photons (as with visible PDs !)
- CF₄ (n = 1.0005, θ_max: 32 mrad)
 - π threshold : 4.4 GeV/c
 - K threshold : 15.6 GeV/c
 - n_det.ph.s (β =1) / 1m : ~ 10
 - to exploit PID up > 60 GeV/c : σ_C_ph < 0.7 mrad</p>

High-tech, expensive mirrors, gas transparency issues at 120 nm

"HIGH PRESSURE" RICH

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

ONE MORE ISSUE

- The current model are based on the use of fluorocarbons

 Limited chromaticity
 High Cherenkov photon yield

 These gasses are not eco-friendly

 They attack O₃

 They have high <u>Global Warming Potential (GWP)</u> values (100 y)

 C₄F₁₀: 4800
 CF₄: 6500
- Can satisfactory gas system/operation w/o fluorocarbons went-out in the open air be realized ?
 Procurent ?
- Other gas options?
 - A first proposal in the context of the design of PID for EIC

REPLACING C-F GASES BY PRESSURIZED Ar

S. Dalla Torre, High Momentum PID at EIC (in 10 years from now), 1st EIC Yellow Report Workshop, Temple University, Philadelphia, 19-21 March 2020, https://indico.bnl.gov/event/7449/.

Silvia DALLA TORRE

35

ALTERNATIVE/COMPLEMENTARY OPTIONS

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

ARE THERE ALTERNSATIVE OPTIONS?

HEP 2021, 14-21/1/2021

RICH & beyond

Silvia DALLA TORRE

37

1/2

ARE THERE ALTERNSATIVE OPTIONS?

ALICE TPC counts 160 8.0<p_<9.0 GeV/c 200 units) data $\begin{array}{c} \pi^{+} + \pi \\ K^{+} + K \\ p + \overline{p} \\ e^{+} + e \end{array}$ (before upgrade) Pb-Pb vs.nn=2.76 TeV 140 (arb. 410. 160 120 sum TPC dE/dx 140 0.6<|\eta|<0.8 100 120 pp 80 100 √s=2.76 TeV 60 80 40 J. Alme et al., 60 NIMA 622 (2010) 316 40 20 20 -20 -10 10 -30 0 20 30 0.2 0.3 5678910 20 4 $\Delta_{\pi} = dE/dx - \langle dE/dx \rangle_{\pi}$ (arb. units) p (GeV/c)Cluster counting ? MC studies in the EIC context Proposal for Generic Detector R&D for an Electron Ion Collider A novel TPC readout system based on readout chips for Si-pixel detectors Ties Behnke¹, Klaus Dehmelt^{3*}, Klaus Desch², Ralf Diener¹, Ulrich Einhaus1, Prakhar Garg3, Jochen Kaminski2, Thomas K. Hemmick3 LDC-TPC Ar/CH_/CO, (93/5/2) 10 separation power (0) dE/dx by charge 10 LDC-TPC He/CO, (70/30) separation power (G) 0 resolution = 4.3% dE/dx by cluster counting efficiencies LDC-TPC Ar/CH4/CO2 (93/5/2) 9 (120 cm truck length, 200 samples) dE/dx by cluster counting 8 efficiency = 100% 100% (120 cm track length) (120 cm track length) 8 e/π 7 Cluster Cluster dE/dx 7 Counting, 50% π/K counting 5 6 Partial eff. 4 5 e/π π/Κ Ĩ/K 3 K/p 4 20% 2 K/p 3 1 2 0 10 -1 10⁻¹ 10² 10^{2} 103 103 1 1 10 10 1 momentum (GeV/c) momentum (GeV/c) 0

HEP 2021, 14-21/1/2021

10

9

8

5

4

3

2

1

0

separation power (G)

RICH & beyond

momentum (GeV/c)

1

10

-1 10

10²

8

2/2

ARE THERE ALTERNSATIVE OPTIONS?

2/2

Dedicated R&D

Dedicated R&D

LAPPD studies

G.A.Cowan et al, NIMA 876 (2017) 80

https://wiki.bnl.gov/conferences/index.php/EIC R%25D

https://wiki.bnl.gov/conferences/index.php/EIC R%25

- Ongoing within LHCb
 - particular attention to B-field behaviour (LHCb environment)
 - time resolution performance (as a handle to overcome the high rate occupancy at HiLumi LHC)
 Reports in
- Ongoing within eRD14 (generic R&D for EIC)
 - For <u>low-p</u> RICH & beyond applications
- in one task within AIDAinnova
 - Focus on <u>high-p</u> RICH & beyond applications

SiPM studies

- Ongoing within LHCb
 - time resolution performance (as a handle to overcome the high rate occupancy at HiLumi LHC)
- in one task within AIDAinnova
 - Operational parameters and ageing for low- and high-p applications
- Within INFN EIC_NET

MPGD-based photon detectors

- Initial studies within eRD6 (generic R&D for EIC) and INFN program EIC_NET
- Study continuation in one Expression of Interest for AIDAinnova
- Within INFN EIC_NET

Reports in

SUMMARY

For PID at both low and high momenta

- a new generation of photon detectors NEEDED
- no PD option without open questions
 - Gaseous PDs : number of detected photons
 - LAPPD: development still on-going
 - SiPM: noise rates and ageing

 RICH & beyond at high-p in classical collider setups needed at EIC, desired for e+e- colliders

- <u>Challenges</u>: "short" radiator, light material, PDs operated in B-field
- A <u>few active high-p counters</u> (RICHes in LHCb, COMPASS)
- No completely consistent RICH model existing yet
- Principle approaches
 - Standard with visible light PDs
 - Windowless RICH with MPGDs
 - High-pressure RICH

FLUOROCARBON RADIATOR issues: high P-Ar approach, to be

HEP 2021, 14-21/1/2021

validated

Thank you !

