Dead or Alive? Implications of the Muon Anomalous Magnetic Moment for 3-3-1 Models

IAS Program on High Energy Physics (2021)

Yoxara S. Villamizar

January 19, 2021

Astroparticles and Particles Physics group International Institute of Physics Federal University of Rio Grande do Norte

Focus on DOI:10.1016/j.physletb.2020.135689, e-Print:2003.06440

In collaboration with Álvaro S. de Jesus, Sergey Kovalenko, C. A. de S. Pires, Farinaldo S. Queiroz.

Outline

Introduction

- ⇒ Muon Anomalous Magnetic Moment
- 2 3-3-1 Models
- ${f 3}$ General analytical expressions for the corrections to $g_\mu-2$
- **4** Implications of $g_{\mu} 2$ for 3-3-1 Models
- **6** Conclusions

Introduction: Muon Anomalous Magnetic Moment

$$\overrightarrow{\mu_{\mu}} = g_{\mu} \frac{q}{2m_{\mu}} \overrightarrow{S} \Rightarrow a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = 116591802(2)(42)(26) \times 10^{-11}, \quad a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QCD}}$$
1) **Current discrepancy**: $\Delta a_{\mu}c = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (261 \pm 78) \times 10^{-11} (3.3\sigma).^{1}$ Limited by:
Experimental uncertain: FERMILAB and J-PARC and Theoretical uncertain: hadronic effects
2) **Projected discrepancy**: $\Delta a_{\mu}p = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (261 \pm 34) \times 10^{-11} (5\sigma).$

Figure 1: Feynman diagrams of the corrections to a_{μ} on SM interactions.

¹M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 030001 (2018). Yoxara S. Villamizar ArXiv:2003.06440 IAS Program on High Energy Physics(2021) International

3-3-1 Models

$$\mathsf{SU(3)}_{\mathsf{C}} imes \mathsf{SU(3)}_{\mathsf{L}} imes \mathsf{U(1)}_{\mathsf{X}} \Rightarrow rac{Q}{e} = rac{1}{2} (\lambda_3 + \alpha \lambda_8) + \mathsf{XI}, \qquad lpha = -\sqrt{3}, \ \pm rac{1}{\sqrt{3}}$$

- 1 MINIMAL 3-3-1 Model, ² $\alpha = -\sqrt{3}$
- **2** 3-3-1 R.H.N Model³, $\alpha = -\frac{1}{\sqrt{3}}$
- **3** 3-3-1 LHN Model (with neutral lepton)⁴, $lpha = -rac{1}{\sqrt{3}}$,
- ECONOMICAL 3-3-1 Model ⁵
- **⑤** 3-3-1 MODEL WITH EXOTIC LEPTONS, $\alpha = -\sqrt{3}^6$

 $SU(3)_L \times U(1)_X \xrightarrow{\langle \chi \rangle} SU(2)_L \times U(1)_Y$, and $SU(2)_L \times U(1)_Y \xrightarrow{\langle \eta \rangle, \langle \rho \rangle} U(1)_Q$

Yoxara S. Villamizar A

ArXiv:2003.06440

IAS Program on High Energy Physics(2021)

²[F. Pisano and V. Pleitez, Phys. Rev. D, 46 (1992), p. 410 arXiv:hep-ph/9206242 [hep-ph]]

³[H.N. Long Phys. Rev. D, 54 (1996), p. 4691 arXiv:hep-ph/9607439 [hep-ph]]

⁴M.E. Catano, R. Martinez and F. Ochoa Phys. Rev. D, 86 (2012), Article 073015 arXiv:1206.1966 [hep-ph]

⁵P.V. Dong and H.N. Long Adv. High Energy Phys., 2008 (2008), Article 739492 arXiv:0804.3239 [hep-ph]

⁶W.A. Ponce, J.B. Florez and L.A. Sanchez Int. J. Mod. Phys. A, 17 (2002), p. 643 arXiv:hep-ph/0103100 [hep-ph]

 Figure 2: Feynman diagrams that contribute to the muon anomalous magnetic moment in the 3-3-1

 models investigated in this work.
 Yoxara S. Villamizar
 ArXiv:2003.06440
 IAS Program on High Energy Physics(2021)
 International Institute of Physics-UFRN
 5 / 20

Minimal 3-3-1 Model

$$\chi = \left(egin{array}{c} \chi^- \ \chi^{--} \ \chi^0 \end{array}
ight),
ho = \left(egin{array}{c}
ho^+ \
ho^0 \
ho^{++} \end{array}
ight), \eta = \left(egin{array}{c} \eta^0 \ \eta^+_1 \ \eta^+_2 \end{array}
ight)$$

$$S = \begin{pmatrix} \sigma_1^0 & h_2^- & h_1^+ \\ h_2^- & H_1^{--} & \sigma_2^0 \\ h_1^+ & \sigma_2^0 & H_1^{++} \end{pmatrix}, \quad f_L^a = \begin{pmatrix} v^a \\ \ell^a \\ (\ell^c)^a \end{pmatrix}$$

$$v_{\eta}^2 + v_{\rho}^2 + v_{\sigma_2}^2 = v^2, \quad v_{\eta} = v_{\rho} = 174 \text{GeV}$$

Masses of the new bosons:

$$\begin{split} \mathcal{M}_{W'}^{2} &= \frac{g^{2}}{4} \left(v_{\eta}^{2} + v_{\chi}^{2} + v_{\sigma_{2}}^{2} + 2v_{\sigma_{1}}^{2} \right) \\ \mathcal{M}_{U}^{2} &= \frac{g^{2}}{4} \left(v_{\rho}^{2} + v_{\chi}^{2} + 4v_{\sigma_{2}}^{2} \right) \\ \mathcal{M}_{Z'}^{2} &\approx \left(\frac{g^{2} + \frac{g'^{2}}{3}}{3} \right) v_{\chi}^{2} \\ \mathcal{M}_{\eta_{1}^{+}}^{2} &\sim f v_{\chi} \\ \mathcal{M}_{h_{1}^{+},h_{2}^{+}}^{2} &\sim v_{\chi} \\ \mathcal{M}_{R_{\sigma_{2}}}^{2} &\sim v_{\chi} \end{split}$$

Yoxara S. Villamizar

ArXiv:2003.06440

3-3-1 R.H.N Model (with right-handed neutrino)

$$f_{L}^{a} = \begin{pmatrix} v^{a} \\ l^{a} \\ (v^{c})^{a} \end{pmatrix}; l_{R}^{i} \quad \chi = \begin{pmatrix} \chi^{0} \\ \chi^{-} \\ \chi^{0'} \end{pmatrix}, \rho = \begin{pmatrix} \rho^{+} \\ \rho^{0} \\ \rho^{+'} \end{pmatrix}, \eta = \begin{pmatrix} \eta^{0} \\ \eta^{-} \\ \eta^{0'} \end{pmatrix}$$
$$\mathscr{L}^{CC} \supset -\frac{g}{2\sqrt{2}} \left[\overline{v_{R}^{c}} \gamma^{\mu} (1 - \gamma_{5}) \overline{l} W_{\mu}^{\prime -} \right]$$
$$\mathscr{L}_{Yuk} \supset G_{ab} \overline{f}_{al} \rho e_{b_{R}} \xrightarrow{\text{leads to}} \mathscr{L} \supset G_{s} \overline{\mu} \mu S_{2}, \text{ with } G_{s} = m_{\mu} \sqrt{2}/(2\nu)$$

$$\begin{split} M_{Z'}^2 &= \frac{g^2}{4(3-4s_w^2)} \left(4c_W^2 v_\chi^2 + \frac{v_\rho^2}{c_W^2} + \frac{v_\eta^2 \left(1-2s_W^2\right)^2}{c_W^2} \right) \text{, } M_{W'}^2 = M_{X^0}^2 = \frac{g^2}{4} \left(v_\eta^2 + v_\chi^2 \right) \\ M_{S_2}^2 &= \frac{1}{2} \left(v_\chi^2 + 2v^2 \left(2\lambda_2 - \lambda_6\right) \right) \text{ and } M_{h^+}^2 = \frac{\lambda_8 + \frac{1}{2}}{2} \left(v^2 + v_\chi^2 \right) \\ v_\eta^2 + v_\rho^2 &= v^2 \Rightarrow v_\rho = v_\eta = v/\sqrt{2} \end{split}$$

Yoxara S. Villamizar

3-3-1 LHN and Economical 3-3-1 Models

3-3-1 LHN Model

$$f_L^a = \begin{pmatrix} v^a \\ I^a \\ N^a \end{pmatrix}; I_R^a, N_R^a$$

$$\mathcal{L}^{\text{L.H.N}} \supset -\frac{g}{\sqrt{2}} \left[\overline{N_L} \gamma^{\mu} \overline{\ell}_L W_{\mu}^{\prime -} \right]$$
$$\mathcal{L}^{\text{L.H.N}}_{Yuk.} \supset G_\ell \overline{\ell_R} N_L h_1^- + G_\ell \overline{\ell_R} v_L h_2^+ + G_s \overline{\mu} \mu S_2$$

$$M_{h_1^-}^2 = rac{\lambda_8 + rac{1}{2}}{2} (v^2 + v_\chi^2), \quad M_{h_2^-}^2 = rac{v_\chi^2}{2} + \lambda_9 v^2.$$

Yoxara S. Villamizar

3-3-1 LHN and Economical 3-3-1 Models

ECONOMICAL 3-3-1 Model

$\chi=\left(egin{array}{c} \chi_1^0\ \chi_2^-\ \chi_3^0\end{array} ight),\eta=\left(egin{array}{c} \eta_1^+\ \eta_2^0\ \eta_2^+\ \eta_3^+\end{array} ight),$

$$\begin{array}{l} \left\langle \eta_2^0 \right\rangle = v_{\eta_2^0} = v/\sqrt{2}, \left\langle \chi_1^0 \right\rangle = v_{\chi_1} = u/\sqrt{2}, \\ \left\langle \chi_3^0 \right\rangle = v_{\chi_3^0} = v_{\chi}/\sqrt{2}u, v \ll v_{\chi} \end{array}$$

$$\begin{split} \mathscr{L} \supset G_{ij}^{\ell} \bar{f}_{iL} \eta \ell_{jR} + G_{ij}^{\varepsilon} \varepsilon_{pmn} \left(\bar{f}_{iL}^{c} \right)_{p} (f_{iL})_{m} (\eta)_{n} \\ \Rightarrow G_{l} I_{R} v_{L} \eta_{1}^{+} \text{ and } G_{s} \bar{\mu} \mu S_{2} \end{split}$$

$$\begin{split} M_{\eta_1^+}^2 &= \frac{\lambda_4}{2} \left(u^2 + v^2 + v_\chi^2 \right), \\ M_{S_2}^2 &= 2\lambda_1 v_\chi^2 \end{split}$$

3-3-1 LHN Model

$$f_L^a = \begin{pmatrix} v^a \\ l^a \\ N^a \end{pmatrix}; l_R^a, N_R^a$$

$$\mathscr{L}^{\mathrm{L.H.N}} \supset -\frac{g}{\sqrt{2}} \left[\overline{N_L} \gamma^{\mu} \bar{\ell}_L W_{\mu}^{\prime -} \right]$$

 $\mathscr{L}_{Yuk.}^{\mathsf{L},\mathsf{H},\mathsf{N}} \supset G_{\ell}\overline{\ell_{R}}N_{L}h_{1}^{-} + G_{\ell}\overline{\ell_{R}}\nu_{L}h_{2}^{+} + G_{s}\overline{\mu}\mu S_{2}$

$$M_{h_1^-}^2 = \frac{\lambda_8 + \frac{1}{2}}{2} (v^2 + v_{\chi}^2), \quad M_{h_2^-}^2 = \frac{v_{\chi}^2}{2} + \lambda_9 v^2$$

Yoxara S. Villamizar

3-3-1 Model with Exotic Leptons

$$\begin{split} f_{1L} &= \begin{pmatrix} v_1 \\ l_1 \\ E_1^- \end{pmatrix}; l_1^c; f_{2,3L} = \begin{pmatrix} v_{2,3} \\ l_{2,3} \\ N_{2,3} \end{pmatrix}; l_{2,3}^c \quad f_{4L} = \begin{pmatrix} E_2^- \\ N_3 \\ N_4 \end{pmatrix}; E_2^c; f_{5L} = \begin{pmatrix} N_5 \\ E_3^+ \\ l_3^+ \end{pmatrix}; E_3^c \\ \chi_i^e &= \begin{pmatrix} \chi_i^- \\ \chi_i^0 \\ \chi_i^{0'} \end{pmatrix}, \chi_3 = \begin{pmatrix} \chi_3^0 \\ \chi_3^+ \\ \chi_3'^+ \end{pmatrix}, \quad i = 1, 2, \\ \chi_i^{0'} &= (0, 0, v_\chi)^T , \ \langle \chi_2 \rangle = (0, v/\sqrt{2}, 0)^T \text{ and } \langle \phi_3 \rangle = (v'/\sqrt{2}, 0, 0)^T , v_\chi \gg v , v' , v' \sim v \\ \mathscr{L} \supset \frac{g'}{2\sqrt{3}s_W c_W} \bar{\mu} \gamma_\mu (g_V + g_A) \mu Z' - \frac{g}{\sqrt{2}} (\overline{N_{1L}} \gamma_\mu \mu_L + \bar{\mu}_L \gamma_\mu N_{4L}) K_\mu^+ - \frac{g}{\sqrt{2}} (\bar{\mu}_L \gamma_\mu E_L) K_\mu^0 \\ &+ h_1 \bar{\mu} (1 - \gamma_5) N \chi^+ + h_2 \bar{\mu} E^- \chi^0 + h_3 \bar{\mu} E_2^- \chi^0 + \text{H.c.} \\ M_{Z'}^2 &= \frac{2}{9} (3g^2 + g'^2) v_\chi^2, \ M_{K^+}^2 = M_{K^0}^2 = \frac{g^2}{4} \left(2v_\chi^2 + v^2 \right) \end{split}$$

Yoxara S. Villamizar

General analytical expressions for the corrections to $g_{\mu} - 2$

Physics Reports Volume 731, 14 February 2018, Pages 1-82

10 / 20

A call for new physics: The muon anomalous magnetic moment and lepton flavor violation

Manfred Lindner ⊠, Moritz Platscher ⊠, Farinaldo S. Queiroz ዳ ⊠

New Physics Contributions to the Muon Anomalous Magnetic Moment: A Numerical Code (arXiv:1403.2309)

The corrections to $g_{\mu} - 2$: Minimal 3-3-1 for heavy bosons

The corrections to $g_{\mu} - 2$ arise from the presence of new gauge bosons U^{++}, Z' and W', and charged scalar η_1^- . The contributions for heavy bosons are given as:

$$\Delta a_{\mu} \left(U^{++} \right) \simeq -2 \frac{1}{\pi^2} \frac{m_{\mu}^2}{M_U^2} \left| \frac{g}{2\sqrt{2}} \right|^2, \text{ with } M_U \gg m_{\mu}$$
$$\Delta a_{\mu} \left(v, W' \right) \simeq \frac{1}{4\pi^2} \frac{m_{\mu}^2}{M_{W'}^2} \left| \frac{g}{2\sqrt{2}} \right|^2 \left(\frac{5}{3} \right)$$

$$\Delta a_{\mu}\left(\mu, Z'\right) \simeq rac{-1}{4\pi^2} rac{m_{\mu}^2}{M_{Z'}^2} \left| rac{g}{2c_W} rac{\sqrt{3}\sqrt{1-4s_W^2}}{2} \right|^2 \left(-rac{4}{27}
ight)$$

$$\Delta a_{\mu}\left(\eta_{1}^{+}
ight) \simeq rac{-1}{4\pi^{2}} rac{m_{\mu}^{2}}{M_{\eta_{1}^{+}}^{2}} \left|rac{m_{\mu}\sqrt{2}}{2v_{\eta}}
ight|^{2} \left(rac{1}{6}
ight)$$
, with $M_{\eta_{1}^{+}} \gg m_{\mu}, m_{\nu_{\mu}}$

Yoxara S. Villamizar

3-3-1 R.H.N Model

This model induces several corrections to g - 2, coming from the Z', W', h^+ and S_2 .

3-3-1 L.H.N Model

The contributions to g-2coming from the Z', h_1^- and S_2 fields are identical to the 3-3-1 r.h.n model.

$$\begin{split} \Delta a_{\mu} \left(v, W' \right) &\simeq \frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{W}^{2}} \left| \frac{g}{2\sqrt{2}} \right|^{2} \left(\frac{5}{3} \right), \\ \Delta a_{\mu} \left(\mu, Z' \right) &\simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{Z}^{2}} \frac{1}{3} \left| -\frac{g}{4c_{W}\sqrt{3-4s_{W}^{2}}} \right| \left[-\left| 1-4s_{W}^{2} \right|^{2} + 5 \right], \quad \Delta a_{\mu} \left(N, W' \right) &\simeq \frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{W}^{2}} \left| \frac{g}{2\sqrt{2}} \right|^{2} \frac{5}{3}, \\ \Delta a_{\mu} \left(h^{+} \right) &\simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{h^{+}}^{2}} \left| \frac{m_{\mu}\sqrt{2}}{2v_{\eta}} \right|^{2} \frac{1}{6}, \\ \Delta a_{\mu} \left(S_{2} \right) &\simeq \frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{S_{2}}^{2}} \left(\frac{m_{\mu}\sqrt{2}}{2v_{\eta}} \right)^{2} \left[\frac{1}{6} - \left(\frac{3}{4} + \log \left(\frac{m_{\mu}}{M_{S_{2}}} \right) \right) \right], \qquad \Delta a_{\mu} \left(h_{2}^{+} \right) \simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{Z}^{2}} \left| \frac{m_{\mu}\sqrt{2}}{2v_{u}} \right|^{2} \frac{1}{6}. \end{split}$$

3-3-1 R.H.N Model

This model induces several corrections to g - 2, coming from the Z', W', h^+ and S_2 .

3-3-1 L.H.N Model

The contributions to g-2coming from the Z', h_1^- and S_2 fields are identical to the 3-3-1 r.h.n model.

$$\begin{split} \Delta a_{\mu} \left(v, W' \right) &\simeq \frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{W}^{2}} \left| \frac{g}{2\sqrt{2}} \right|^{2} \left(\frac{5}{3} \right), \\ \Delta a_{\mu} \left(\mu, Z' \right) &\simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{Z}^{2}} \frac{1}{3} \left| -\frac{g}{4c_{W}\sqrt{3-4s_{W}^{2}}} \right| \left[-\left| 1-4s_{W}^{2} \right|^{2} + 5 \right], \\ \Delta a_{\mu} \left(h^{+} \right) &\simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{b_{+}^{+}}^{2}} \left| \frac{m_{\mu}\sqrt{2}}{2v_{\eta}} \right|^{2} \frac{1}{6}, \\ \Delta a_{\mu} \left(S_{2} \right) &\simeq \frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{S_{2}^{2}}^{2}} \left(\frac{m_{\mu}\sqrt{2}}{2v_{\eta}} \right)^{2} \left[\frac{1}{6} - \left(\frac{3}{4} + \log \left(\frac{m_{\mu}}{M_{S_{2}}} \right) \right) \right]. \\ \Delta a_{\mu} \left(h_{2}^{+} \right) &\simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{b_{1}^{2}}^{2}} \left| \frac{m_{\mu}\sqrt{2}}{2v_{\eta}} \right|^{2} \frac{1}{6}. \end{split}$$

The corrections to $g_{\mu} - 2$: Economical 3-3-1 and 3-3-1 with exotic leptons for heavy bosons

ECONOMICAL3-3-1 Model

The corrections to Δa_{μ} that arise from Z' and W' have nearly the same magnitude as in the 3-3-1 R.H.N model.

$$\Delta a_{\mu}\left(\eta_{1}^{+}
ight) \simeq rac{-1}{4\pi^{2}} rac{m_{\mu}^{2}}{M_{\eta_{1}^{+}}^{2}} \left|rac{m_{\mu}\sqrt{2}}{2v_{\eta}}
ight|^{2} rac{1}{6}, \quad \Delta a_{\mu}\left(S_{2}
ight) \simeq rac{1}{4\pi^{2}} rac{m_{\mu}^{2}}{M_{S_{2}}^{2}} \left(rac{m_{\mu}\sqrt{2}}{2v_{\eta}}
ight)^{2} \left[rac{1}{6} - \left(rac{3}{4} + \log\left(rac{m_{\mu}}{M_{S_{2}}}
ight)
ight)
ight].$$

3-3-1 Model with exotic leptons

The corrections to g-2 coming from the Z', K^0 and K^+ bosons.

$$\begin{split} \Delta a_{\mu} \left(N, K^{+} \right) &\simeq \frac{1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{K^{+}}^{2}} \left| \frac{g}{\sqrt{2}} \right|^{2} \frac{5}{3}, \quad \Delta a_{\mu} \left(E, K^{0} \right) &\simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{K^{0}}^{2}} \left| \frac{g}{\sqrt{2}} \right|^{2} \left(\frac{4}{3} \right), \\ \Delta a_{\mu} \left(\mu, Z' \right) &\simeq \frac{-1}{4\pi^{2}} \frac{m_{\mu}^{2}}{M_{Z'}^{2}} \left| \frac{g'}{2\sqrt{3}s_{W}c_{W}} \right|^{2} \frac{1}{12} \left[- \left| \left(-c_{2W} + 2s_{W}^{2} \right) \right|^{2} + 5 \left| \left(c_{2W} + 2s_{W}^{2} \right) \right|^{2} \right]. \end{split}$$

Yoxara S. Villamizar

Results: Minimal 3-3-1

Figure 3: Overall contribution to Δa_{μ} from the Minimal 3-3-1 model. The green bands are delimited by $\Delta a_{\mu} = (261 \pm 78) \times 10^{-11}$. The current 1σ bound is found by requiring $\Delta a_{\mu} < 78 \times 10^{-11}$ while the projected bound is obtained for $\Delta a_{\mu} < 34 \times 10^{-11}$. We used $M_{Z'} = 0.395 v_{\gamma}$, $M_{W'} = M_{II^{\pm\pm}} = 0.33 v_{\gamma}.$ I HC-13 TeV: $M_{7'} > 3.7 \text{ TeV}$ $M_{W'} > 3.2 \text{ TeV}$ Δa_{μ} Current: $M_{7'} > 434.5$ GeV. $M_{W'} > 646 \text{ GeV}.$ Δa_{μ} p projected: $M_{7'} > 632 \text{ GeV}.$ $M_{W'} > 996.1 \text{ GeV}.$

LHC's limit: A. Nepomuceno and B. Meirose Phys. Rev. D, 101 (2020), Article 035017 arXiv:1911.12783 [hep-ph]

Yoxara S. Villamizar

ArXiv:2003.06440

Results: 3-3-1 R.H.N and Economical Model

We used $M_{Z'} = 0.395 v_{\chi}$, $M_{W'} = 0.33 v_{\chi}$.

 3-3-1 R.H.N Model
 3-3-1 Economical Model

 LHC-13 TeV:
 LHC-13 TeV:

 $M_{Z'} > 2.64$ TeV
 $M_{Z'} > 2.64$ TeV

 Δa_{μ} Current: $M_{Z'} > 158$ GeV, $M_{W'} > 133$ GeV. $\Delta a_{\mu}p$ projected: $M_{Z'} > 276.5$ GeV, $M_{W'} > 239$ GeV. Δa_{μ} Current: $M_{Z'} > 59.3$ GeV, $M_{W'} > 49.5$ GeV. Δa_{μ} p projected: $M_{Z'} > 271.4$ GeV, $M_{W'} > 226.7$ GeV.

LHC's limits: M. Lindner, M. Platscher and F.S. Queiroz, Phys. Rep., 731 (2018), p. 1

Yoxara S. Villamizar

Results: 3-3-1 L.H.N and 3-3-1 with exotic leptons

3-3-1 L.H.N Model: We used $M_{Z'} = 0.395 v_{\gamma}$, $M_{W'} = 0.33 v_{\gamma}$. LHC-13 TeV⁷: $M_{7'} > 2$ TeV $M_{\rm M} = 1$ GeV: $M_{\rm N} = 100 \,\,{\rm GeV}$: $\Delta a_{\mu}c$: M_{Z'} > 160 GeV, M_{W'} > 134.3 GeV. $\Delta a_{\mu}c$: M_{Z'} > 136.7 GeV, M_{W'} > 114.2 GeV. Δa_{μ} p: M_{Z'} > 285 GeV, M_{W'} > 238.3 GeV. $\Delta a_{\mu} p$: M_{Z'} > 276.5 GeV, M_{W'} > 231 GeV. Model 3-3-1 with exotic leptons: We used $M_{Z'} = 0.55v_{\chi}$, $M_{K'} = M_{K^0} = 0.46v_{\chi}$. LHC-13 TeV⁸: $M_{Z'} > 2.91$ TeV $M_N = 10 \text{ GeV} M_F = 150 \text{ GeV}$: $M_N = 100 \text{ GeV} M_F = 150 \text{ GeV}$: $\Delta a_{\mu}c: M_{Z'} > 429 \text{GeV}, M_{W'} > 359 \text{ GeV}.$ $\Delta a_{\mu}c$: M_{Z'} > 369 GeV, M_{W'} > 309.1 GeV. Δa_{II} p: M_{Z'} > 600 GeV, M_{W'} > 501.4 GeV. Δa_{μ} p: M_{Z'} > 693 GeV, M_{W'} > 579.6 GeV.

⁷M. Lindner, M. Platscher and F.S. Queiroz, Phys. Rep., 731 (2018), p. 1

⁸C. Salazar, R.H. Benavides, W.A. Ponce and E. Rojas J. High Energy Phys., 07 (2015), Article 096 arXiv:1503.03519 [hep-ph]

Yoxara S. Villamizar ArXiv:2003.06440

6440 IAS Prog

IAS Program on High Energy Physics(2021)

Results: Extended version of the 3-3-1 LHN Model

The inert triplet scalar allows us to include $\mathscr{L} \supset y_{ab}\bar{f}_a\phi e_{bR}$.

With $y_{22} = 1$

Mass scalar:

come from $\lambda \phi^{\dagger} \phi \chi^{\dagger} \chi$

 $M_\phi \sim \lambda v_\chi, \quad \lambda = 0.1$

This extended version successfully accommodates the a_{μ} anomaly for $v_{\chi} \sim 10$ TeV.

Figure 4: Overall contribution of the 3-3-1 LHN model augmented by an inert scalar triplet ϕ .

Yoxara S. Villamizar

- We concluded that none of the five models investigated here are capable of accommodating the anomaly.
- We derived robust and complementary 1σ lower mass bounds on the masses of the new gauge bosons, namely the Z' and W' bosons.
- If the anomaly observed in the muon anomalous magnetic moment is confirmed by the g-2 experiment at FERMILAB these models must be extended.
- We presented a plausible extension to the 3-3-1 LHN model, which features an inert scalar triplet.

Another paper you may be interested in!

International Journal of Modern Physics A Vol. 35, No. 23 (2020) 2050126 (26 pages) © World Scientific Publishing Company DOI: 10.1142/S0217751X20501262

Are 3-4-1 models able to explain the upcoming results of the muon anomalous magnetic moment?

D. Cogollo,^{*,¶} Yohan M. Oviedo-Torres^{*,§,∥} and Yoxara S. Villamizar^{†,‡,**}

*Departamento de Fésica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970, Campina Grande, PB, Brazil †International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universidario, Lagoa Nova, Natal-RN 59078-970, Brazil †Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal – RN, 59078-970, Brazil [§]Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, João Pessao, PB, Brazil [§]diegocogollo@dj.ufg.edu.br [§]diegocogollo@dj.ufg.edu.br [§]mont@estudantes.ufpb.br [§]tresora@ufrn.edu.br

In light of the upcoming measurement of the muon anomalous magnetic moment (g-2), we revisit the corrections to g-2 in the context of the $SU(4)_L \times U(1)_X$ gauge symmetry. We investigate three models based on this gauge symmetry and express our results in terms of the energy scale at which the $SU(4)_L \times U(1)_X$ symmetry is broken. To draw solid conclusions we put our findings into perspective with existing collider bounds. Lastly, we highlight the difference between our results and those rising from $SU(3)_L \times U(1)_X$ constructions.

Keywords: Extra gauge bosons; muon anomalous magnetic moment.

PACS numbers: 12.15.Mm, 14.70.Fm, 14.70.Hp, 14.70.Pw

Yoxara S. Villamizar

ArXiv:2003.06440

International Institute of Physics-UFRN

