

HKUST JOCKEY CLUB

IAS PROGRAM

Online Program

High Energy Physics

January 14-21, 2021

Higgs-ττ CP Violation Phase @ Future Lepton Colliders

Shao-Feng Ge

gesf@sjtu.edu.cn

IAS Program on High Energy Physics (HEP 2021)

SFG, Gang Li, Michael Ramsey-Musolf, Pedro Pasquini [arXiv:2012.13922]

专政道研究听

Tsung-Dao Lee Institute

Higgs Decay Modes

- LHC tells us: h(125) is SM-like \rightarrow Dream Case for Experiments!
- ILC250 & CEPC produces h(125) via $e^+e^- \rightarrow Zh, \nu\bar{\nu}h, e^+e^-h$
- Indirect Probe to New Physics. 5/ab with 2 detectors in 10y \rightarrow 10⁶ Higgs \rightarrow Relative Error $\sim 10^{-3}$.

Higgs @ Future Lepton Colliders

CEPC CDR vol 2 – Physics & Detector, Chapter 11

Shao-Feng Ge @ HKIAS 2021

Higgs Precision Observables

 Br($b\bar{b}$)
 Br($c\bar{c}$)
 Br(gg)
 Br($\tau\bar{\tau}$)
 Br(WW)
 Br(ZZ)
 Br($\gamma\gamma$)
 Br($\mu\bar{\mu}$)
 Br(inv)

 58.1%
 2.10%
 7.40%
 6.64%
 22.5%
 2.77%
 0.243%
 0.023%
 0

Decay mode	$\sigma(ZH) \times BR$	BR
$H \rightarrow b \bar{b}$	0.27%	0.56%
$H \to c \bar{c}$	3.3%	3.3%
$H \to gg$	1.3%	1.4%
$H \to WW^*$	1.0%	1.1%
$H\to ZZ^*$	5.1%	5.1%
$H\to\gamma\gamma$	6.8%	6.9%
$H\to Z\gamma$	15%	15%
$H\to \tau^+\tau^-$	0.8%	1.0%
$H \to \mu^+ \mu^-$	17%	17%
$H \to inv$	_	< 0.30%

CEPC CDR vol 2 – Physics & Detector, Table 11.3

Shao-Feng Ge @ HKIAS 2021

Why CEPC? Qing-Hong Cao, CLHCP18 Precision = Discovery

$m_W m_Z \sin \theta_W$, EW symmetry breaking Global symmetry of scalar potential
A_{FB}	Parity violation; weak isospin
Γ_Z	3 active neutrinos
m_t	Fermion mass origin (the only natural quark)
Γ_t	Equivalence theorem
m_H	Vacuum stability
Γ_H	fundamental or composite, or

We, bump hunters, are also excellent painters of Nature's details.

- ... excluded (ruled out) ...
- ... consistent with the SM ...

Shao-Feng Ge @ HKIAS 2021

We discover ... is not supported at 95% CL We discover a tight constraint on NP ...

CP-violating Higgs Di-tau Decays: Baryogenesis and Higgs Factories arXiv:2012.13922

Shao-Feng Ge, Gang Li, Pedro Pasquini, Michael J. Ramsey-Musolf

We demonstrate how probes of CP-violating observables in Higgs di-tau decays at prospective future lepton colliders could provide a test of weak scale baryogenesis with significant discovery potential. Measurements at the Circular Electron Positron Collider, for example, could exclude a CP phase larger than 2.9° (5.6°) at 68% (95%) C.L. assuming the Standard Model value for magnitude of the tau lepton Yukawa coupling. Conversely, this sensitivity would allow for a 5σ discovery for 82% of the CP phase range $[0, 2\pi)$. The reaches of the Future Circular Collider - ee and International Linear Collider are comparable. As a consequence, future lepton colliders could establish the presence of CP violation required by lepton flavored electroweak baryogenesis with at least 3σ sensitivity. Our results illustrate that

Higgs factories are not just precision machines but can also make $\mathcal{O}(1)$ measurement of the new physics beyond the Standard Model.

Shao-Feng Ge @ HKIAS 2021

h-ττ Yukawa Coupling

BSM:
$$\mathcal{L} = -\frac{m_{\tau}}{v\sqrt{2}}h\overline{\tau}\left(\cos\Delta + i\gamma_{5}\sin\Delta\right)\tau$$

 Δ is the CP phase in the h-tt Yukawa coupling!

The CP phase can introduce O(1) effect on Yukawa coupling

Shao-Feng Ge @ HKIAS 2021

New Physics behind CP Phase

Type-III THDM

$$\mathcal{L}_Y = -\overline{L}Y_1\ell_R\Phi_1 - \overline{L}Y_2\ell_R\Phi_2 + \text{h.c.}$$

which contributes 3 neutral scalars (h, H, A)

$$-\frac{m_{\tau}}{v}\overline{\tau}_{L}\tau_{R}\left[\left(s_{\beta-\alpha}+\frac{N_{\tau\tau}}{m_{\tau}}c_{\beta-\alpha}\right)h+\left(c_{\beta-\alpha}-\frac{N_{\tau\tau}}{m_{\tau}}s_{\beta-\alpha}\right)H+iAN_{\tau\tau}\right]$$

The SM-like Higgs h has the τ Yukawa coupling as

$$\kappa_{\tau}(\cos\Delta + i\sin\Delta) = s_{\beta-\alpha} + \frac{N_{\tau\tau}}{m_{\tau}}c_{\beta-\alpha}$$

H. K. Guo, Y. Y. Li, T. Liu, M. Ramsey-Musolf and J. Shu [arXiv:1609.09849 [hep-ph]]

Baryogenesis for matter-antimatter asymmetry!

Shao-Feng Ge @ HKIAS 2021

CP Measurement of h-ττ Coupling

More background in Xiao-Ping Wang & Wei Su's talks

h -> ττ Decay

	Integrated luminosity	\sqrt{s}	Number of Higgs bosons	Decay modes	Branching ratio
CEPC [7]	$5.6 \ {\rm ab}^{-1}$	$240~{\rm GeV}$	$1.1 imes 10^6$	$Z \rightarrow \text{vis.}$	80%
FCC-ee $[8]$	5 ab^{-1}	$240~{\rm GeV}$	$1.0 imes 10^6$	$h ightarrow \tau^+ \tau^-$	6.64%
ILC [9]	$2 {\rm ~ab^{-1}}$	$250~{\rm GeV}$	$0.64 imes 10^6$	$\tau \to \pi \nu_{\tau}$	10.82%
				$\tau \to \rho \nu_\tau$	25.49%

$\tau^{\pm} \rightarrow \pi^{\pm} \nu$	τ decay products	Number of Higgs decay events		n			
	products	before	after	before	after	before	after
	(π,π)	684	99	622	90	398	58
$\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$	(π, ρ)	3223	465	2930	423	1875	271
	(ρ, ρ)	3797	541	3451	491	2209	314

Shao-Feng Ge @ HKIAS 2021

Event Topology

The angular distribution can be generally parametrized as:

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\delta\phi} = \frac{1}{2\pi}\left[1 + A\cos(2\Delta - \delta\phi)\right]$$

1. The 1st term fixed by normalization

2. The 2nd term parameters (A, $\delta \phi$) have various choices!

Shao-Feng Ge @ HKIAS 2021

Angular Differential Distributions

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\delta\phi} = \frac{1}{2\pi}\left[1 + A\cos(2\Delta - \delta\phi)\right]$$

1. Natural Azimuthal Angle

$$\delta\phi = \delta\phi_{\nu} \qquad A = \frac{\pi^2}{16} \begin{cases} 1 & \tau \to \pi\nu \\ \left(\frac{m_{\tau}^2 - 2m_{\rho}^2}{m_{\tau}^2 + 2m_{\rho}^2}\right)^2 & \tau \to \rho\nu \end{cases}$$
 J. H. Kuhn and F. Wagner, NPB '84

1

2. Polarimeter

A factor of 0.2 suppression

$$\begin{split} \tau &\to \pi \nu : \mathbf{r}_{\pm} \equiv -\hat{\mathbf{p}}_{\nu_{\tau^{\pm}}} \\ \tau &\to \rho \nu : \mathbf{r}_{\pm} \equiv -\frac{1}{N_{\pm}} \begin{bmatrix} \hat{\mathbf{p}}_{\nu_{\tau^{\pm}}} + \frac{2m_{\tau}}{m_{\rho}^2 - 4m_{\pi}^2} \frac{E_{\pi^{\pm}} - E_{\pi_{\pm}^0}}{E_{\pi^{\pm}} + E_{\pi_{\pm}^0}} \left(\mathbf{p}_{\pi^{\pm}} - \mathbf{p}_{\pi_{\pm}^0} \right) \end{bmatrix} \\ \delta \phi &= \delta \phi_r \qquad A = \frac{\pi^2}{16} \quad \begin{array}{c} \text{Uniformly large for both} \\ \text{channels} \end{array}$$

B. Grzadkowski & J. F. Gunion, PLB '95

Shao-Feng Ge @ HKIAS 2021

Angular Differential Distributions

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\delta\phi} = \frac{1}{2\pi}\left[1 + A\cos(2\Delta - \delta\phi)\right]$$

1. Natural Azimuthal Angle

2. Polarimeter

3. Acoplanarity
$$\tan \phi^* \equiv \frac{\hat{\mathbf{p}}_{\rho^-} \cdot [(\mathbf{p}_{\pi^+} \times \mathbf{p}_{\pi^0_+}) \times (\mathbf{p}_{\pi^-} \times \mathbf{p}_{\pi^0_-})]}{(\mathbf{p}_{\pi^+} \times \mathbf{p}_{\pi^0_+}) \cdot (\mathbf{p}_{\pi^-} \times \mathbf{p}_{\pi^0_-})}$$

G. R. Bower, T. Pierzchala, Z. Was & M. Worek [hep-ph/0204292] M. Worek [hep-ph/0305082]

4. The θ Variable $\tan \Theta \equiv \frac{\hat{\mathbf{p}}_{\tau^{+}} \cdot (\mathbf{E}_{+} \times \mathbf{E}_{-})}{\mathbf{E}_{-} \cdot \mathbf{E}_{+} - (\mathbf{E}_{+} \cdot \hat{\mathbf{p}}_{\tau^{+}})(\mathbf{E}_{-} \cdot \hat{\mathbf{p}}_{\tau^{+}})}$ $\mathbf{E}_{\pm} \equiv \frac{m_{\rho}^{2} - 4m_{\pi}^{2}}{2m_{\tau}} \left[\frac{m_{\tau}^{2} - m_{\rho}^{2}}{m_{\tau}^{2} + m_{\rho}^{2}} \hat{\mathbf{p}}_{\nu_{\tau^{\pm}}} + \frac{2m_{\tau}}{m_{\rho}^{2} - 4m_{\pi}^{2}} \frac{(E_{\pi^{\pm}} - E_{\pi^{0}})}{(E_{\pi^{\pm}} + E_{\pi^{0}})} \left(\mathbf{p}_{\pi^{\pm}} - \mathbf{p}_{\pi^{0}_{\pm}} \right) \right]$

R. Harnik, A. Martin, T. Okui, R. Primulando and F. Yu, PRD 2013

Shao-Feng Ge @ HKIAS 2021

Angular Differential Distributions

专改道研究听 Tsung-Dao Lee Institute

The dependence on the CP phase is O(1) effect!

Shao-Feng Ge @ HKIAS 2021

Momentum Reconstruction

The Higgs momentum is reconstructed in terms of the Z momentum

$$p_h = (\sqrt{s}, 0, 0, 0) - p_Z$$

Higgs Smearing				
Observables	Uncertainty			
$P_{x,y}$	$1.82 {\rm GeV}$			
$P_z \ (Z \to jj)$	$2.3 {\rm GeV}$			
$P_z \ (Z \to l\bar{l})$	$0.57~{ m GeV}$			

The π / ρ momentum reconstructed from

 $|\mathbf{p}_T|$

X. Chen and Y. Wu, EPJC 2017 [arXiv:1703.04855]

 $0.036 |\mathbf{p}_T|$

The measurable momenta are those of Z, π , ρ

$$80 \text{ GeV} < \sqrt{p_Z^2} < 100 \text{ GeV}$$

Shao-Feng Ge @ HKIAS 2021

CP Measurement of h-ττ Coupling

final-state particles

Degeneracy in Neutrino Momentum

Two-fold degeneracy

Neutrino Momentum

decay planes & azimuth angle difference

1、 Neutrino ($p_{
u}$) & Anti-Neutrino Momentum ($p_{ar{
u}}$)

8 d.o.f

- 2 、 Energy-momentum conservation $p_{\nu}=P-p_{\bar{\nu}}$ 4 d.o.f
- 3 、 Neutrino on-shell conditions $p_{\nu}^2=p_{\bar{\nu}}^2=0$

2 d.o.f

4 、 τ on-shell conditions $~p_{\tau^\pm}^2=m_{\pi^\pm}^2$ 0 d.o.f

Shao-Feng Ge @ HKIAS 2021

Impact Parameter

Essentially remove the degeneracy!

D. Jeans and G. W. Wilson, PRD 2018 [arXiv:1804.01241] X. Chen and Y. Wu, EPJC 2017 [arXiv:1703.04855]

Shao-Feng Ge @ HKIAS 2021

$$\chi^2_{\rm CPV}(\Delta^{\rm true}) \equiv \min[\chi^2(\Delta^{\rm true}, \Delta^{\rm test} = 0^\circ), \chi^2(\Delta^{\rm true}, \Delta^{\rm test} = 180^\circ)]$$

Shao-Feng Ge @ HKIAS 2021

CEPC, FCC-ee, ILC

	68% C.L. for $m=1$	95% C.L. for $m=1$	95% C.L. for $m=2$	Number of Higgs bosons
CEPC	2.9°	5.6°	7.0°	$1.1 imes 10^6$
FCC-ee	3.2°	6.3°	7.8°	$1.0 imes 10^6$
ILC	3.8°	7.4°	9.3°	$0.64 imes 10^6$

Shao-Feng Ge @ HKIAS 2021

CP Sensitivity

Shao-Feng Ge @ HKIAS 2021

3σ Discovery of Baryogenesis Region

If the baryogenesis scenario with Type-III THDM is correct, it can be verified @ future lepton colliders with ~3σ sensitivities!

Shao-Feng Ge @ HKIAS 2021

Baryogenesis @ CEPC

Even with free strength, most of the baryogenesis region can be verified $\,\gtrsim 5\sigma$

Shao-Feng Ge @ HKIAS 2021

- 1、 Future lepton colliders: **golden machines** for measuring Higgs properties
- 2 Not just precision machines, but can make O(1) measurement of NP
- 3 、 CP discovery potential
 - (a) **95%** of parameter space above **95% C.L.**
 - (b) 82% of parameter space above 5σ C.L.
- 4 、 **1σ sensitivity** can reach (**2.9**°, **3.2**°, **3.8**°) @ (CEPC, FCC-ee, ILC)
- 5、 **3σ capability** of distinguishing EWBG from CP conserving case

Thank You

Shao-Feng Ge @ HKIAS 2021

Backup

专改道研究听 Tsung-Dao Lee Institute

Shao-Feng Ge @ HKIAS 2021