LHCb Silicon Detector Upgrade

C. Bertella, on behalf of LHCb IAS Program on High Energy Physics 2021 21-October-2021

Outline

- LHCb Upgrade: motivation and schedule
- VErtex LOcator
- Upstream Tracker
- Future plans

LHCb detector and its upgrade

A Forward General-Purpose Detector at the LHC

- Forward arm spectrometer with unique coverage in pseudorapidity (2 < η < 5)
- Catching 40% of heavy quark production crosssection in 4% of solid angle
- Precision measurements in beauty and charm sectors
- Extended physics program to QCD, EW, direct searches and participation in heavy ion runs

Why upgrading LHCb?

- Go beyond Flavour Physics: from exploration to precision studies
- No significant signs of New Physics in Run1 and 2 but anomalies observed!

- Aiming for more precision:
 - \blacktriangleright BR(Bs -> $\mu^+\mu^-$) down to ~10% of SM
 - CKM γ angle to ~1°
 - > 2 β s to precision <20% of SM value
 - Charm CPV search below 10-4

LHCb Upgrade I is ongoing (LS2), almost a new detector for Run3 and Run4

- Full software trigger and all detectors readout at 40MHz
- Replace tracking detectors + PID + VELO to face $\mathscr{L} \sim 2 \times 10^{33} \text{ sec}^{-1} \text{ cm}^{-2}$
- Consolidate PID, tracking and ECAL during LS3

• LHCb Upgrade II will start on LS4 and run beyond Run4

 \blacktriangleright Use new detector technologies + timing to increase \mathscr{L} ~ 1.5 x 10^{34} sec^{-1} \ cm^{-2}

Overview of the new VELO CERN-LHCC-2013-021

21-January-2021

The RF Foil

Motivations

- Separate primary and secondary vacua (contamination from outgassing)
- Guide beam wakefields
- RF shielding of electronic components

Specifications

- Reduced material budget
- Withstand 10 mbar pressure difference
- 3.5 mm clearance from the beam and
 900 µm clearance from the sensors
- Dimensions: 1.1 m × 0.2 m × 0.4 m

Engineering Marvel

- Start from a solid forged Al alloy block
- >98% of material is milled away: 6 months
- Final thickness at tips of modules:
 ~250 µm
 C. Bertella

Foil has a corrugated shape: clearance from modules VELO senso _{RF foil} Particles traverse corrugate part multiple times before first measuring point

Improvement of 10% on key physics parameters when reducing thickness from 250µm to **150µm**

The RF Foil: etching

Etching

- Chemical etching with NaOH solution (only innermost region)
- Procedure well controlled and performed in steps
- Bonus challenge: thickness variations from milling
- Extensive metrology campaign to create a mask

 Procedure demonstrated on path finder prototype box

RF foil installation performed after the first COVID CERN lockdown

- Silicon pixel modules around the LHC beam interaction region
- LHCb has trigger-less readout - full detector readout @ 40 MHz
- Cooling requirement
 - ▶ CO₂ cooling
 - Sensor tip temperature <-20°C
 - Power dissipation per module ~30W
 - Operating in vacuum
 - Low material: 5mm of the silicon sensor are not glued on the cooling substrate (innermost part)

- Four n-on-p sensors per double sided module
- Each sensor (43 x 15 mm) bonded to three VeloPix ASIC's: 55 µm
- Detector Active area = 0.12 m²
- 2 GBTx for signal fan-out to VeloPix
- 2 bidirectional slow control links
- 20 unidirectional high speed data links

VELO

 Silicon pixel modules around the LHC beam interaction

Solution: Evaporative CO2 cooling through microchannels etched in silicon

Excellent thermal efficiency

No thermal expansion mismatch with silicon ASICs and sensors

Radiation hardness of CO₂

Very low contribution to the material budget

substrate (innermost part)

Four n-on-p sensors per double sided module

> three VeloPix ASIC's: 55 μm etector Active area = 0.12 m² GBTx for signal fan-out to loPix

oidirectional slow control links) unidirectional high speed data ks

Micro-channel cooling

Increase in cross-section between the restriction and the main channels triggers the boiling

500 µm thick silicon substrate

Input restrictions:

- ▶ 60 x 60 µm , 40 mm long
- Dominant pressure drop
- Prevent instabilities among the channels

Main channels

- 120 x 200 μm
- [230, 290] mm long
- Heat is absorbed by the CO₂: change in gas/liquid ratio

Cooling performance

Cooling performance has been evaluated using thermal mockups emulating half pixel module

- Test performed with ASIC heaters at 20 W gives a $\Delta T \sim 6^{\circ}C$
 - Effectiveness of the substrate at providing local cooling
 - ASIC power is concentrated at the part more remote from the silicon tip

Full module power consumption ~23 W

- Expected end-of-lifetime power dissipation on the sensor ~1W: 27W
- To reduce material innermost part of the sensor is not in contact with the coeling substrate

Overhang power~1.6W

Readout chain

PCIe40 Read-Out Card

- Common off-detector hardware
- Two firmware flavours
- Slow Control: 1 card per 13 Modules
- High Speed DAQ: 1 card per Module

Opto- & Power Board (OPB)

- Low voltage to all components in read-out chain
 - Radiation hard FEASTMP DC/DC converters
- Electrical \leftrightarrow Optical signal
- convertors: VTTx/VTRx
- Controlled via GBTx and SCA

Vacuum Feedthrough Board (VFB)

 Transmit control & high speed signals, temperature monitoring, LV and HV between Module and OPB
 Data

Sod

cable &

LV

Upstream tracker <u>CERN-LHCC-2014-001</u>

Scope

Improve p_T resolution and suppress ghost tracks

 Trigger speed up: using Velo+UT matching, very low-pT tracks can be removed (pT < 0.4 GeV) and search window in SciFi tightened

UT design and characteristics

Sensor	Туре	Pitch	Length	Strips	# Sensor	Shape
А	p-in-n	187.5 µm	99.5 mm	512	888	Square
В	n-in-p	93.5 µm	99.5 mm	1024	48	Square
С	n-in-p	93.5 µm	50 mm	1024	16	Rectangle
D	n-in-p	93.5 µm	50 mm	1024	16	Circular cut-off
C. Bertella			21-January-2021			

Silicon micro-strip detector

- Four layers (x, u, v, x) upstream of magnet: 2 m² each
 - Two planes with vertical strips, two rotated by ±5°
- Finer granularity and closer to beam

Sensor Features

In the inner-most region finer segmentation and radiation hardness

 A-type sensors: embedded pitch adapters (fan-up)

Top-side HV biasing

Cut off around beam pipe

UT: readout & mechanics

Readout ASIC: SALT (4192 chips)

- ▶ 128 channels with 6-bit ADC (5 bit and polarity)
 - ▶130 nm-TSMC with 30 MRad radiation tolerance
- ▶40 MHz readout
- Fast shaping time/return to baseline
- Pedestal & common mode subtraction, zero-suppression

Peripheral electronics

- A flexible pigtail cable connects the stave to PEPI
- Backplane distributes balanced load to DCBs
- DCBs optically send data to LHCb DAQ
- Bandwidth~ 7.1 Tb/s
- Also control system via VTRx

Stave

- 1.6 m x 10 cm low-mass support Integrated Ti pipe for Bi-phase CO₂ cooling
- Low-mass Kapton flex for readout, power and grounding
- Sensors on front and back face overlap

What's next? Upgrade II

VELO

- Timing at high lumi is essential to keep the same performance as Upgrade I
- 4D tracking vs. timing layer is subject to further studies
- Main challenges: radiation, cooling, spacial resolution, data rate..
- R&D phase: several technologies are explored

UT

- UT staves, which were designed for UI, have insufficient bandwidth for event data
- Various scenarios on the tables, combination of current sensor and CMOS pixel sensor

Mighty

- Tracking would benefit by high granularity in the inner region
- Combine SciFi and CMOS technologies
- Upgrade Ib 2 SciFi modules/layer, 4m² CMOS
- Upgrade II modification New SciFi and 18m² CMOS

HL-LHC will deliver to LHCb a luminosity 1.5x10 ³⁴ cm⁻² s ⁻¹ →7.5 x Upgrade I...

But also:

- 7.5 x multiplicity, data rates and track density
- ▶ 7.5 x radiation damage!!!

Conclusion

Upgrade I is on-going

- Significant progress made in the past month despite the COVID
- Schedule redefinition mandatory to face country restriction
- But ... a great detector will be deliver in time **(great) again!!** for next exiting phase of LHCb data-taking

Upgrade II R&D is ramping up

- R&D phase started
- Many options on the table
- It is time to explore new technologies and design the next masterpiece

Futuristic view of LHCb

Back up

LHCb Limitation

Performance table <u>arxiv.1808.08865</u>

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [274]$	0.025	0.036	0.007	_
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [275]$	0.031	0.032	0.008	_
$R_{\phi},~R_{pK},~R_{\pi}$	_	0.08,0.06,0.18	-	$0.02,\ 0.02,\ 0.05$	-
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [609]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [44]	$14 \mathrm{\ mrad}$	_	$4 \mathrm{mrad}$	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	$35 \mathrm{\ mrad}$	_	9 mrad	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	_	11 mrad	Under study [611]
$a_{ m sl}^s$	33×10^{-4} [211]	$10 imes 10^{-4}$	_	$3 imes 10^{-4}$	_
$ V_{ub} / V_{cb} $	$6\% \ [201]$	3%	1%	1%	-
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$90\% \ [264]$	34%	_	10%	$21\% \ [612]$
$\tau_{B^0_s \to \mu^+ \mu^-}$	22% [264]	8%	_	2%	-
$S_{\mu\mu}$	-	_	_	0.2	_
$b ightarrow c \ell^- \bar{ u_l} { m LUV} { m studies}$					
$\overline{R(D^*)}$	$0.026 \ [215, 217]$	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	-	0.02	-
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	$8.5 imes 10^{-4}$ [613]	$1.7 imes 10^{-4}$	$5.4 imes10^{-4}$	$3.0 imes10^{-5}$	_
$A_{\Gamma} \ (\approx x \sin \phi)$	$2.8 imes 10^{-4}$ [240]	$4.3 imes10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes10^{-5}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	$3.2 imes10^{-4}$	$4.6 imes10^{-4}$	$8.0 imes10^{-5}$	_
$x\sin\phi$ from multibody decays	_	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{ m s}^0\pi\pi)~1.2 imes10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_

C. Bertella

21-January-2021

Phase-I Upgrade for Run 3

LHCb Upgrade-I challenges Remove L0 trigger!!

Achieved same reconstruction performance in harsher environment Record all bunch crossings with fully software trigger

Old VELO detector

VELO is at the heart of LHCb tracking, trigger and vertexing

 Excellent performance, reliable, cluster efficiency >99%, best hit resolution down to <4µm

Movable device: from 50 mm to 5 mm, closer to LHC beams during collisions

VELO Sensor

	Old VELO	New VELO	
Operation years	2010-2018	2022-2030	
Sensor	173k R- <i>φ</i>	41M pixels	
Num. layers	23	26	
Distance from IP	8.2mm		
Fluence	4.3 x 1014	8 x1015	
HV tolerance	500 V	1000 V	
ASiC readout	1MHz	Data driven	
Data Rate	150 Gb/s	2.8 Tb/s	
Power	-8 °C	-25°C	

VELO sensor

Collect 6000 e-/MIP99% eff at 370 Mrad

Equivalent to 5 years of LHCb Upgrade 50 fb⁻¹

NB: the ATLAS IBL (@ 550 fb⁻¹) expects $3.3 \times 10^{15} 1$ MeV n_{eq}/cm^2 or 160 MRad.

Mean number of particles crossing an ASIC per event

21-January-2021

Module production

Mechanical construction

Precision tile placement to 10 µm

Flex circuit placement

wire bonding and HV/LV/data cable attachment

Module schematic

Old Tracking detector

Present Tracking System under upgrade

VELO+TT(Si-strip)+Dipole(no change)+IT(2% inner area, Si)/OT(Straw Tubes)

Pattern-recognition based on current tracking system would not be efficient in upgraded scenario

•Too high occupancy in the central region

UT: stave in details

Stencil application of TIM, epoxy, silicone pedestal

Heat TIM, place module, overnight curing

Another module on the stave!

UT: Sensor+ASIC characterisation LHCb-PUB-2019-009 12 120 Type A unirradiated sensor 10 100 8 80

Test beam @ Fermilab

- ▶99.5% efficiency and SN~12
- ▶ Type B sensor irradiated to 2 x maximal dose
- ▶94% efficiency and SN~11

Total noise and common-mode subtracted noise for the Type A sensor while in the FTBF testbeam and after the testbeam on the bench

C. Bertella

21-January-2021

0

0

100

200

300

Bias Voltage (V)

400

500

600

0

Efficiency (%

Efficiency (%)

Cooling performance

Cooling performance has been evaluated using thermal mockups emulating half pixel module

- In nominal conditions, expected 12 W, but tolerates up to 18 W
- The end of-lifetime expectation is 13 W

• ΔT(13W) around 6°C

- Test performed with ASIC heaters at 20 W gives a ∆T~ 6°C
 - Effectiveness of the substrate at providing local cooling
 - ASIC power is concentrated at the part more remote from the silicon tip
- CO₂ normal operation at -30°C corresponds total pressure of 14.28 bar
 - At room temperature the pressure rises to 57.29 bar
 - Operational temperature range is between -40°C and +40°C

Tracking Upgrade

New tracking able to cope with 50 fb⁻¹ plus 40MHz readout, and **improve performance**

- Better 3D impact parameter
 resolution: 10-15% improvement in B
 decay time resolution
- Better p_T resolution
- •Gost rate reduction
- Significant speed up in the reconstruction C. Bertella

21-January-2021