

LHC Injectors Upgrade

SPS RF interlocks post-LS2

Andy Butterworth BE/RF

Carlos Oliveira, Eric Montesinos, Heiko Damerau, Gregoire Hagmann, Giulia Papotti, Philippe Baudrenghien, Elena Shaposhnikova, David Glenat

- Introduction SPS RF upgrade
- RF power interlocks
- Beam interlocks
- Interlock procedures and OP interface
- Conclusion

200MHz travelling wave cavities

- TWC200 cavities removed from SPS, dismantled and reassembled
- 4 cavities (4 and 5 sections) + spare sections \rightarrow 6 cavities (3 and 4 sections)

New Solid State power Amplifiers (Thales)

- Powering the 2 new cavities (cavity 3 and cavity 6)
- 16 towers per cavity (total 32)
- 80 amplifier modules per tower
- Controls: 1 PLC per tower + 1 PLC per cavity

Existing Siemens and Philips power plants

- Tetrode tube amplifiers + solid state pre-drivers
- 2 cavities each

Renovation of Low-Level RF system

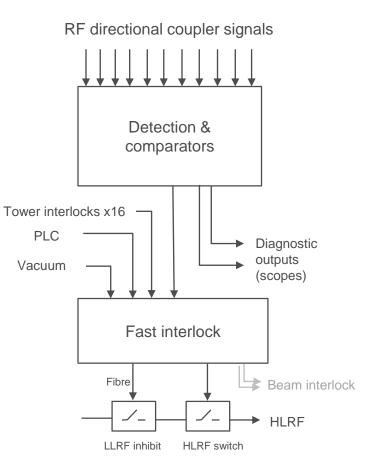
- LLRF Cavity Control and Beam Control (analog + VME) removed from Faraday cage
- Replaced with fully digital microTCA-based feedback systems and new electronics for pickup and cavity controller front-ends

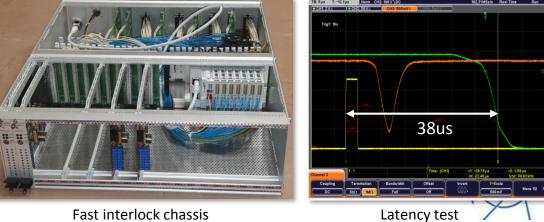
RF power interlocks overview

- Protections limit maximum power to avoid damage to hardware
 - In particular for Thales SSPA but also for existing Philips and Siemens amplifiers
 - Several layers of interlocks with different timescales

Functionality	Check	System	Averaging	Action
Digital clamping of RF drive	Peak power	LLRF	~10 ns	Alarm
RF switch piloted by power (protect amplifiers)	Peak power	Fast interlock, ~50 μs delay	11.5 μs (~2 turns)	RF OFF (+ Dump)
RF switch piloted by PLC (protect coax lines etc.)	Average power	Power/PLC	Limits <10 s and >10 s	RF OFF (+ Dump)
Amplifier interlocks (<i>I, V</i> , etc.)	Average power	Power/PLC	~200 ms	RF OFF (+ Dump)

- The clamping performed by LLRF is a **functional limitation**
- All other limits are part of hardware protection


RF power interlocks implementation

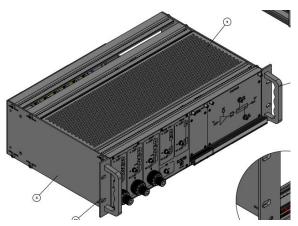

Fast interlock system

- Based on Beckhoff fast interlock modules in PLC
 - Hardware logic independent of PLC CPU
- Interlock chain performance tested and accepted
 - ~38us latency from input to output
- Deployed in Thales, currently under test
 - Power interlocks generated via hardware comparators (47 signals)
- Fast interlock modules installed in Siemens/Philips
 - Power signals not yet available, but will eventually be used for average power interlocks
 - Amplifier protection by internal fast interlocks

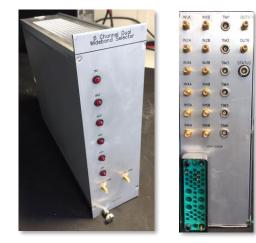
• Signal acquisition and slow interlocks:

- Slow (average power) interlocks will be implemented in PLC
 - Analog inputs installed in Philips and Siemens PLCs (4 channels par cavity), will shortly be installed in Thales PLCs
- Average power measurements will also be published via FESA
- Alarms and warnings will be generated
- Fast analogue signals available in patch panel for scope

Fast interlock chassis


RF beam interlocks overview

Beam interlocks are foreseen to:


- protect Thales amplifiers from reverse power
 - amplifiers are not in safe state immediately after a trip
 - potential for damage with intense beams if beam not dumped
- protect pickup analog front-ends from overvoltage
 - switchable attenuators (PPM)
 - can burn electronics if wrong attenuation selected
 - HW detection and interlock in analog front-end chassis

• pre-empt beam loss in case of RF trip during ramp

- simulations show that for HL-LHC beam, demanded power peak is before end of ramp
- close to limit \rightarrow trip of 1 cavity would result in beam loss
- dump if any 200MHz cavity trips (not foreseen for 800MHz)
- inhibit injection if incorrect reference clocks selected
 - "LHC REFERENCE" must be selected if Dynamic destination = LHC1_TI1 or LHC2_TI8
 - check 5ms before 1st injection
 - before LS2: NIM module (manual switches) + VME DIO + FESA class
 - after LS2: new VME 6-channel switch module + FESA class (remote PPM control only)

New pickup front-ends

Beam interlocks implementation

Beam interlock concentrator + CIBU in BA3 Faraday cage

- 1 input from each cavity interlock
 - 1 fibre per cavity already foreseen for RF OFF signal to LLRF
 - 1 additional fibre will be used for beam interlock
- Inputs from other equipment in Faraday cage
 - PU front-ends, clock selection, crab cavity phase, ...

Installation of new fast interlock crate in Faraday cage

- Replaces old beam dump interface crate and alarms PLC
- Same HW used for cavity interlocks
- Greater flexibility, monitoring and remote control
- Possibility to mask interlocks in case of cavity downtime
 - Allow degraded mode operation with lower intensity beams
 - Management of masking, critical settings?

Faraday cage beam dump interface pre-LS2

Interlock behaviour (Thales)

- 16 solid-state amplifier towers per cavity
 - 80 SSPA modules per tower
 - After RF trip, possible SSPA module damage from beam-induced reverse power
- If a module trips or RF power limit exceeded: RF OFF and beam dump
 - Interlocks latched operator has to make a reset
 - PLC automatically switches faulty modules off line (output short circuited)

- As long as we still have more than N modules, the operator can then switch on again, beam permit restored
 - N is a programmable parameter, defined by RF experts
- If the number of active modules on one tower is lower than N: RF off and beam dump
 - until an RF expert repairs or lowers N
- If we decide to switch off the cavity (all modules off line), RF switch will remain off, beam permit automatically restored
 - Self-masking no need for explicit masking of beam interlocks
 - Injecting beam with poor RF power, BLMs will dump the beam
 - Rely on operational procedure to avoid this
 - SIS could be surveying the lines and interlock if there is not enough power

Similar logic for Philips/Siemens

- Switching back on will clear beam interlock
- If restart not possible, masking?
- Automatic beam permit restore?

Controls and OP interface

RF power interlocks will be integrated into existing RF PLC FESA class

• PLC acquisition will also be available in this FESA class

Interlock thresholds management

- Fast interlocks: set in hardware (potentiometers)
- "Slow" PLC interlocks: Keep threshold settings expert but make them readable for OP

Warning when approaching power limits

• Warning limits could be put into FESA class or application

• Alarms

- Archived alarms in dedicated application (or tab in RF power application)
- Alarm status and timestamp taken directly from FESA class Alarm property
- Try to get history data also from logging

• Beam interlock concentrator + Faraday cage alarms

- HW integration and PLC development starting (Dec 2020)
- New FESA class to be written

- LIU-SPS renovation of RF system requires reorganisation and implementation of new interlocks
- Fast interlock system integrated into controls of Thales solid-state amplifiers
 - Most important for hardware protection

Evolution of interlocks for existing Philips and Siemens systems

- Less critical than Thales
- · Amplifier protection assured by existing internal interlocks
- Protection of lines will benefit from average power interlocks (to be implemented)

• Beam interlocks required for protection of Thales as well as other RF equipment

- New beam interlock crate being developed, will be ready in early 2021
- Operational interface being defined in collaboration with OP

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

11

Power observation and diagnostics

 \rightarrow Observation and logging of RF power per amplifier/cavity averaged over relevant timescales \rightarrow Generate alarms, but no further automatic action

Averaging duration	Purpose	Limit [MW] (3/4 sections)	Observation system
11.5 μs (~7 _{rev} /2)	Peak power	1/1.6	LLRF (fast acq.)
10 ms	Fast manipulations, bunch rotation		LLRF and PLC
2 s	Acceleration part (fixed target beams)	0.6/0.8	Measurement with PLC system
10 s	Acceleration part of cycle (LHC-type beams)		
20 s	Limit towards CW for amplifiers		
Cycle length		04/05	
Super-cycle length		0.4/0.5	
10 min	Long term evolution		

- \rightarrow Use capabilities of LLRF and PLC systems to determine power to cavities
- \rightarrow Derive also average per cycle from LLRF for cross-calibration of PLC and LLRF systems

