Testing Goodness of Fit

Dr. Wolfgang Rolke
University of Puerto Rico – Mayaguez
CERN Phystat Seminar
Table of Content

- Problem statement
- Hypothesis testing
- Chi-square
- Methods based on empirical distribution function
- Other tests
- Power studies
- Running several tests
- Tests for multi-dimensional data
The Archetypical Statistics Problem:

➢ We have a probability model

➢ We have data from an experiment

➢ Does the data agree with the probability model?
What’s the density?

Good Model?

Or maybe needs more?
General Problem Statement

\(F: \) cumulative distribution function

\[H_0: F = F_0 \]

Usually more useful:

\[H_0: F \in \mathcal{F}_0 \]

\(\mathcal{F}_0 \) a family of distributions, indexed by parameters.
Hypothesis Testing Basics

- Type I error: reject true null hypothesis
- Type II error: fail to reject false null hypothesis

A: HT has to have a true type I error probability no higher than the nominal one (α)

B: probability of committing the type II error (β) should be as low as possible (subject to A)

Historically A was achieved either by finding an exact test or having a large enough sample.

p value = probability to reject true null hypothesis when repeating the experiment and observing value of test statistic or something even less likely.

If method works p-value has uniform distribution.
GOF ≠ Model Selection

- Note above: no alternative hypothesis H_1
- Different problem:
 - $H_0: F = \text{flat} \ vs \ H_0: F = \text{linear}$
 - → model selection
- Usually better tests: likelihood ratio test, F tests, BIC etc.
- Easy to confuse: all GOF papers do power studies, those need specific alternative.
- Our question: is F a good enough model for data? We want to guard against any alternative.
Frequentist vs Bayesian

Not again …

Actually no, GOF equally important to both (everybody has a likelihood)

Maybe more so for Bayesians, no non-parametric methods.

But GOF is frequentist. Bayesian GOF would need prior on space of probability distributions.
Simple Example: Is the die fair?

Theory: die is fair \((p_i = \frac{1}{6})\)

Experiment: roll die 1000 times

If die is fair one would expect \(1000 \times \frac{1}{6} = 167\) 1’s, 2’s and so on

Data:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>187</td>
<td>168</td>
<td>161</td>
<td>147</td>
<td>176</td>
<td>161</td>
</tr>
</tbody>
</table>

➢ Is this a good fit?
Sir Karl Pearson (1900),
“On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling”, Phil. Mag (5) 50, 157–175
Uses as measure of deviations

\[X^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \]

\(k \): number of classes / categories / bins

\(O_i \): observed counts

\(E_i \): expected counts

Agreement is bad if \(X^2 \) is large

\[X^2 \sim \chi^2(k - 1) \]
Is 5.72 “large”?

If die is fair and rolled 1000 times, how large would X^2 typically be?
So X^2 has a chi square distribution with $k-1$ degrees of freedom ($k=$number of categories/bins)

Here: 95^{th} percentile of $\chi^2(5)$ is 11.07

So our $X^2 = 5.72$ is not unusually large, die is (reasonably) fair.

The derivation of the distribution of X^2 uses several approximations, so this needs a sufficiently large sample size. But how large does it have to be?

Famous answer: $E_i \geq 5$ for all i

Seems to have picked 5 for no particular reason. Later research showed this is quite conservative. Test generally works fine if $E_i \geq 5$ for most i and no $E_i < 1$.
Another Derivation of X^2

In a test of a simple vs simple hypotheses likelihood ratio test is most powerful

In the case of a multinomial also leads to X^2!
Fisherian Significance Testing vs Neyman–Pearson

Fisher’s question: does data agree with theory?

Neyman–Pearson’s question: should one reject the null hypothesis in favor of some specific alternative?

Main advantage of Neyman–Pearson style test: can decide which method is better (aka has a higher power)

Today’s procedure is a hybrid of both

GOF testing much closer to Fisherian significance testing, except when we have a specific alternative in mind, but then it’s not GOF!
“All models are wrong but some are useful”

- In GOF testing the null hypothesis is almost certainly wrong, but is it so wrong that we reject it (at the given sample size)?
- If not it should be useful! What useful means depends on the context. (for example testing at 5σ vs 3σ levels).

Λ : Likelihood Ratio

\[-2\log\Lambda \cong X^2 \sim \chi^2(k - 1)\]
The Degree of Freedom Controversy

Not

\[H_0: F = \text{Normal}(0,1) \] (simple hypothesis)

but

\[H_0: F = \text{Normal} \] (composite hypothesis)

Idea: find estimates of parameters, use those.

Any change in test? Pearson said no.

In 1915 Greenwood and Yule publish an analysis of a 2x2 table and note that there is a problem.

In 1922, 1924 and 1926 Sir Karl Fisher published several papers showing that Pearson was wrong.
If \(m \) parameters are estimated

\[X^2 \sim \chi^2(k - 1 - m) \]

The 1922 paper is the first ever to use the term “degrees of freedom”.

In some ways this is an astonishing result: it does not seem to matter how well one can estimate the parameter (aka what the sample size is)

Does it matter what method of estimation is used? Yes, and it has to be minimum chi-square!

Except these days everyone is using maximum likelihood, and then this result can be wrong

Pearson didn’t acknowledge Fisher was right until 1935!
Variations on χ^2

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cressie-Read</td>
<td>$\frac{1}{n\lambda(\lambda-1)} \sum O\left{(\frac{O}{E})^{\lambda} - 1\right}$</td>
</tr>
<tr>
<td>Pearson ($\lambda = 1$)</td>
<td>$\sum \frac{(O-E)^2}{E}$</td>
</tr>
<tr>
<td>log likelihood ratio ($\lambda = 0$)</td>
<td>$2 \sum O \log(\frac{O}{E})$</td>
</tr>
<tr>
<td>Freeman-Tukey ($\lambda = -1/2$)</td>
<td>$4 \sum \left[\sqrt{O} - \sqrt{E}\right]^2$</td>
</tr>
<tr>
<td>Neyman modified χ^2 ($\lambda = -2$)</td>
<td>$\sum \frac{(O-E)^2}{O}$</td>
</tr>
<tr>
<td>modified likelihood ratio ($\lambda = -1$)</td>
<td>$2 \sum E \log(\frac{E}{O})$</td>
</tr>
</tbody>
</table>

Question used to be: which converges fastest to χ^2?

But these days null distribution can be found most easily using Monte Carlo simulation!
function(B=1e4) {
crit95<-c(10.95, 10.97, 10.95, 11.08, 11.00)
E<-rep(1,6)/6*1000
TS.Sim<-matrix(0,B,5)
for(i in 1:B) {
 O<-table(sample(1:6,size=1000,replace=T,
 prob=c(1.25,1,1,1,1,1)))
 TS.Sim[i,1]<-sum((O-E)^2/E)
 TS.Sim[i,2]<-2*sum(O*log(O/E))
 TS.Sim[i,3]<-4*sum((sqrt(O)-sqrt(E))^2)
 TS.Sim[i,4]<-sum((O-E)^2 /O)
 TS.Sim[i,5]<-2*sum(E*log(E/O))
}
power<-rep(0,5)
for(i in 1:5) power[i]<-s
sum(TS.Sim[,i]>/crit95[i])/B
power
}

Simulated loaded die has a slightly higher probability for a "1".

<table>
<thead>
<tr>
<th>Method</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td>55.47%</td>
</tr>
<tr>
<td>log likelihood ratio</td>
<td>53.95%</td>
</tr>
<tr>
<td>Freeman-Tukey</td>
<td>53.33%</td>
</tr>
<tr>
<td>Neyman modified</td>
<td>50.50%</td>
</tr>
<tr>
<td>modified likelihood ratio</td>
<td>52.26%</td>
</tr>
</tbody>
</table>
Usual question: is our theory a good enough model for the data?

We also should worry about: is our model better than it should be?

➢ Overfitting!

➢ Occam’s Razor: *Numquam ponenda est pluralitas sine necessitate*

➢ Here: the best model is the most basic one that works (aka fits the data)
Continuous Data

Need to bin the data

In principle any binning is ok, as long as expected counts are not too low

Two obvious questions:

1) What kind of bins?

2) How many bins?
What kind of bins?

Equi-distant vs Equi-probable
Most textbooks suggest equi–probable is better, but this isn’t really true.

One advantage: $E=n/k \gg 5$ for all bins, no need to adjust binning

Equi–probable bins can be found easily as quantiles of distribution or as quantiles of data
How many bins?

Many textbook answers:

D’Agostini and Stephens $2n^{2/5}$
Sturje’s Rule $1 + \log_2 n$
Mann and Wald $4\left[\frac{2(n+1)^2}{c^2}\right]^{1/5}$

And many more

But: really depends on case:
Example: $H_0: X \sim U[0,1]$ vs $H_a: X \sim \text{Linear}$
Optimal: $k=2!$

Formulas above were derived for the purpose of density estimation, but a number of bins that is good for density estimation (aka histogram) need not be good for gof testing.

My own studies show that a small number, say less than 10, independently of n is usually best.
EDF Methods

EDF: Empirical Distribution Function

\[
\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,x]}(X_i) = \frac{\text{# of events}}{n} \leq x
\]

\(\hat{F}(x) \rightarrow F(x)\) uniformly (Glivenko–Cantelli lemma)

Basic idea for test:

\[
\int D(\hat{F}(x), F(x)) \psi(x) dF(x)
\]

D: distance measure on function space
Ψ: weight function
Theorem: (Probability Integral Transform)
Let X be a continuous random variable with distribution function F, then the random variable $Y = F(X)$ has a uniform $(0,1)$ distribution.

Consequence: D is distribution free, aka does not depend on F.

One table to rule them all!

Except this does not work if parameters are estimated from data!
Kolmogorov–Smirnov

\[
KS = \max \left\{ \left| \hat{F}(x) - F(x) \right| ; x \right\} = \\
\max \left\{ \left| \frac{i}{n} - F(X(i)) \right|, \left| F(X(i)) - \frac{i - 1}{n} \right| \right\}
\]

Many Tests:

Anderson–Darling

Cramér–von Mises

And more...

Modern theory based on convergence of \hat{F} to Gaussian process

<table>
<thead>
<tr>
<th>Method</th>
<th>Theory</th>
<th>Test Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson–Darling</td>
<td>$n \int \frac{(\hat{F}(x) - F(x))^2}{F(x)(1-F(x))} dF(x)$</td>
<td>$-n - \sum_{i=1}^{n} \frac{2i-1}{n} \left[\log F(x_i) + \log (1 - F(x_{n-i+1})) \right]$</td>
</tr>
<tr>
<td>Cramér–von Mises</td>
<td>$\int (\hat{F}(x) - F(x))^2 dF(x)$</td>
<td>$\frac{1}{12n} + \sum_{i=1}^{n} \left[\frac{2i-1}{2n} - F(x_i) \right]^2$</td>
</tr>
<tr>
<td>Watson</td>
<td></td>
<td>$\frac{1}{12n} + \sum_{i=1}^{n} \left[\frac{2i-1}{2n} - F(x_i) \right]^2 - n(\hat{F}(x_i) - \frac{1}{2})^2$</td>
</tr>
</tbody>
</table>
None of these allows estimation of parameters except in some special cases:

\[H_0: X \sim \text{Normal} \]

\[H_0: X \sim \text{Exponential} \]

But then again, just find null distribution via Monte Carlo!
Null Distribution via Simulation

- Estimate parameters from data (and you can use any method you like!) → $\hat{\theta}_D$
- Find test statistic T_D for data, using $F(.|\hat{\theta}_D)$.
- Simulate new data set from $F(.|\hat{\theta}_D)$, find its parameter estimates $\hat{\theta}_1$, and its test statistic T_1 using $F(.|\hat{\theta}_1)$
- Do this (say) 1000 times.
- P-value = % $\{T_i > T_D\}$ (if large T is bad)
- Parametric bootstrap
Methods based on Probability Plots

Plot quantiles of F vs sample quantiles

If F is correct model, points form a straight line
Again Probability Integral Transform:
\[X \sim F \rightarrow F(X) \sim U[0,1] \]

\[(U_1, \ldots, U_n) \text{iid } U[0,1]\]

Order Statistic \[U_{(1)} < \ldots < U_{(n)} \]

\[U_{(k)} \sim \text{Beta}(k, n - k + 1) \]

Find pointwise confidence intervals from quantiles of Beta distribution

Turn into simultaneous confidence band by adjusting nominal confidence level via MC.

R routines: http://academic.uprm.edu/wrolke/research/publications.htm
Smooth Tests

Old idea – goes back to Neyman (1937) – but with some recent improvements.

Basic idea: embed density f in family of densities $\{g_k\}$ indexed by some parameter vector $\Theta = (\theta_1, \ldots, \theta_k)$ which includes true density for some k and such that

$$H_0: \text{true density is } f \leftrightarrow H_0: \Theta = 0$$
\(\{h_j\} \) should be orthonormal family of functions, i.e.

\[
\int_{-\infty}^{\infty} h_i(x) h_j(x) dx = \delta_{ij}
\]

optimal choice of \(\{h_j\} \) depends on \(f \), so different tests for different null hypotheses.
Typical choices for \(\{h_j\} \):
Legendre Polynomials, Fourier series,
\(h_j(x) = \sqrt{2} \cos(j\pi x) \), Haar functions, ...

Basics of the test:

\[
U_j = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} h_j(X_i) \\
T_k = \sum_{j=1}^{k} U_j \\
T_k \rightarrow_d \chi^2_k
\]

Interesting feature: partial tests \((\theta_1, \ldots, \theta_m) = 0\) for \(m<k\) can give insight into HOW null is wrong.
Zhang’s Tests

Not so well known, but often have good power.

\[
Z_K = \max_{1 \leq i \leq n} \left(\left(i - \frac{1}{2} \right) \log \left\{ \frac{i - \frac{1}{2}}{nF_0(X(i))} \right\} + \left(n - i + \frac{1}{2} \right) \log \left\{ \frac{n - i + \frac{1}{2}}{n\{1 - F_0(X(i))\}} \right\} \right)
\]

\[
Z_A = -\sum_{i=1}^{n} \left[\frac{\log F_0(X(i))}{n - i + \frac{1}{2}} + \frac{\log \{1 - F_0(X(i))\}}{i - \frac{1}{2}} \right]
\]

\[
Z_C = \sum_{i=1}^{n} \left[\log \left\{ \frac{F_0(X(i))^{-1}}{(n - \frac{1}{2})/(i - \frac{3}{4}) - 1} \right\} \right]^2
\]

The distributions of all three test statistics need to be found via MC.
And many more...

- Tests based on moments
- Tests specific for a distribution (Normal: more than 30 tests)
- A good place to start: “Comparing Distributions”, Olivier Thais, Springer
So, how do they do?

$H_0 : F = U[0,1] ; n=1000, \alpha = 0.05$

In all cases highest power $\approx 80\text{-}90\%$
It’s a mess! Any one method might have good power in one case and bad power in another.

Chi-square with large number of bins always bad. Chisquare with low number of bins better but not great. KS at least sometimes very bad.

Most methods sometimes good, sometimes bad.

Chi–square and KS: never very good.

Chi–square with large number of bins (>>10): horrible!

AD and Zhang’s Z_C generally quite good.
An obvious Idea:

Do several tests!

If none of them reject the model, it can’t be that bad.

But: look–elsewhere–effect

Take a couple of looks effect?

→ simultaneous inference
Say we perform k tests, each at the α level, and assume model is good. Let T_i be test i rejects null, then:

$$P(\text{at least one test rejects null}) = 1 - \text{Prob}(T_i^c; i = 1, \ldots, k)$$

Easy if tests are independent:

$$1 - \text{Prob}(T_i^c; i = 1, \ldots, k) = 1 - \prod \text{Prob}(T_i^c) = 1 - \prod (1 - \alpha) = 1 - (1 - \alpha)^k$$

\rightarrow Bonferroni correction
But our tests are not independent, they all use the same data.

We can still find correction using simulation!

Example: $H_0: X \sim U[0,1]$, use 9 tests:
Results over 21 Studies
How to run this test:

- R package `simgof` (available from me)

```r
> library(simgof)
> x <- rnorm(1000, 100, 20)
> pnull <- function(x, param) pnorm(x, param[1], param[2])
> rnull <- function(n, param) rnorm(x, param[1], param[2])
> qnull <- function(x, param) qnorm(x, param[1], param[2])
> estimate <- function(x) c(mean(x), sd(x))
> simgof.test(x, pnull, rnull, qnull, TRUE, estimate)
  RC  KS  AD  CdM  W  ZA  ZK  ZC
0.7572 0.4220 0.6020 0.5450 0.5070 0.8010 0.9110 0.7060
```

49
https://drrolke.shinyapps.io/sgoftest
Tests for Multidimensional Data

In principle very useful, but:

Curse of Dimensionality (R. Bellman)

Example: $H_0: (X_1, \ldots, X_d) \sim U[0,1]^d$

We want to do a χ^2 test and we want 10 bins in each dimension. What n do we need to get $E \geq 5$?

- $d=1$: $E = \frac{n}{10} \approx 5 \rightarrow n \approx 50$
- $d=2$: $E = \frac{n}{10^2} \approx 5 \rightarrow n \approx 500$
- $d=3$: $E = \frac{n}{10^3} \approx 5 \rightarrow n \approx 5000$
- ...
- $d=10$: $E = \frac{n}{10^{10}} \approx 5 \rightarrow n \approx 50$ billion

Some other tests not so extreme, but all of them suffer to some degree from the curse.
High-dimensional space is strange!

\[X_1, \ldots, X_n \sim N(0,1), \text{ independent} \]
\[\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{R} \]
\[D = \sqrt{x_1^2 + \ldots + x_n^2} \text{ Euclidean distance to origin} \]

\[\sum_{i=1}^{n} X_i^2 \sim \chi^2(n) \]
\[E[D] \approx \sqrt{E[D^2]} = \sqrt{n} \]
\[P(|D - \sqrt{n}| > t) \leq 2\exp\{-ct^2\} \text{ Hoeffding bound} \]
First: Standardize!

Some methods do this automatically.

Destroys any analytic null distribution.

Usual: \(\frac{x - \bar{x}}{sd(x)} \)

Robust: \(\frac{x - \text{Med}(x)}{\text{IQR}(x)} \)

0-1: \(\frac{x - \text{min} x}{\text{max}(x) - \text{min}(x)} \)

(IQR = Inter Quartile Range = \(P_{75} - P_{25} \))
χ^2 Test: How to bin?
Tests based on Spacings

Under null hypothesis transformed spacings have uniform distributions.

Closely related to nearest-neighbors
Hyperspheres in R^d

More Nearest Neighbor

Presented at Phystat 2003 – SLAC

Based on Rosenblatt transform and Monte Carlo.

Rosenblatt transform imposes artificial order on variables. In d dimensions there are d! ways to go.
Tests based on EDF – KS

Analytic derivation of null distribution also based on Rosenblatt transform, same issue of order.

These days test statistic can be found directly, but needs a lot of calculations. (max not necessarily at data points as in 1D).

$$R^2: \text{Sample size } n \mapsto n^2/4 \text{ function evaluations}$$

Simple Idea: Just look at data points $\mapsto f_{KS}$ (under current investigation..)
Literature

Aslan–Zech Energy tests

Data: x_1, \ldots, x_n
Data simulated from $F : t_1, \ldots, t_m$

$$\varphi = \frac{1}{n^2} \sum_{i<j} R(\|x_i - x_j\|) - \frac{1}{nm} \sum_{i,j} R(\|t_i - x_j\|)$$

R correlation function:

$$R_k(r) = \frac{1}{r^k}$$
$$R_l(r) = -\log r$$
$$R_s(r) = \exp(-r^2/(2s^2))$$
Neyman smooth tests

\[g_k(x; \theta, \beta) = C(\theta, \beta) \exp \left\{ \sum_{i,j=1}^{k} \theta_i \theta_j h_i(x; \beta) h_j(x; \beta) \right\} f(x; \beta) \]

In principle easy, but:
Choice of k?
Same basis functions in different dimensions?
For good power basis functions need to “match” F.
Empirical Characteristic Function

Characteristic function:
\[\phi(t_1, \ldots, t_d) = E[\exp\{it_1X_1 + \ldots + it_dX_d\}] \]

Empirical characteristic function:
\[\Phi_n(t_1, \ldots, t_d) = \frac{1}{n} \sum \exp\{it_1x_{1i} + \ldots + it_dx_{di}\} \]

Test based on the difference.

But: what d? what \(t_1, \ldots, t_d \)?

Power Studies (Very Preliminary..., thanks Anderson)

Sample Size 100, 10000 runs for null distribution, 1000 runs for power

\[C_1 : N(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \text{ vs. } N(\begin{pmatrix} 0.35 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \]

\[C_2 : N(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \text{ vs. } N(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1.65 & 0 \\ 0 & 1 \end{pmatrix}) \]

\[C_3 : N(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \text{ vs. } N(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.45 \\ 0 & 1 \end{pmatrix}) \]

\[C_4 : U[0,1] \times U[0,1] \text{ vs. } z = 0.55x \]

\[C_5 : U[0,1] \times U[0,1] \text{ vs. } z = 0.4xy \]
General Comments:

GOF tests beyond 2 or 3 dimensions unlikely to be very powerful.

At the very least will require gigantic data sets to get reasonable power.

Still a wide-open problem!
Special Cases

Often data has special features that need to be taken into account

Example: High Energy Physics

1) Data is truncated

2) Sample size is random

3) Data is binned
Truncated Data

Data in High Energy Physics is always truncated to a finite interval.

Care needs to be taken with normalization (aka $\int_{-\infty}^{\infty} f(x)dx = 1$)

Statisticians usually will assume this is done automatically and at all times.
Sample Size

In HEP experiments sample size is not fixed a-priori but is a consequence of the run time

\[n \sim \text{Poisson}(\lambda) \]

If \(n \) is fixed: \((N_1, \ldots, N_k) \sim \text{Multinomial}(n, p_1, \ldots, p_k) \)

But if \(n \) is Poisson

\[N_i \sim \text{Poisson}(\lambda p_i) \text{ and } N_1, \ldots, N_k \text{ independent!} \]

(Theory of Marked Poisson processes)

Consequence: \(X^2 \sim \chi^2(k - m) \) \text{ (not } k-m-1)\)

Not an issue if null distribution is found via MC
Data in HEP is often already binned for various reasons, for example detector resolution.

Still need to consider rebining for chi square tests.

How about Kolmogorov–Smirnov?

\[
KS = \max \left\{ \left| \frac{i}{n} - F(X(i)) \right| , \left| F(X(i)) - \frac{i - 1}{n} \right| \right\}
\]

But we only know \(b_i < X(i) < b_{i+1} \)
Obvious answer: $x_i = \frac{b_i + b_{i+1}}{2}$ midpoint

Better answer: spread out N_i points in (b_i, b_{i+1}) uniformly.

Best answer: spread out N_i points in (b_i, b_{i+1}) according to F. Can be quite slow (requires finding quantiles of F, solve many non-linear equations), in practice spreading them uniformly almost as good.
Conclusions

- GOF testing should be part of (most) statistical analysis.
- Any one test can have low power, so do several.
- Chi-square with large number of bins has very low power.
- Tests for multi-dimensional distributions are not great and likely has low power for much more than two dimensions.

THANKS!