
Lightweight Distributed Computing System

LDCS

Geoffrey Mullier on behalf of the LDCS team Lund University 18th November 2020

-LDMX -LDCS

Light Dark Matter Experiment (LDMX)¹

- \succ Accelerator-based Direct Dark matter detection experiment
- > US/Sweden institutes
- \succ Experiment to installed at SLAC making use of e^- beam from the Linac Coherent Light Source (LCLS) X-ray free-electron laser
- \succ e⁻ beam with approximately 10¹⁴ electrons on target
- \succ Backgrounds challenging and requiring "large" data-sets

¹https://link.springer.com/article/10.1007/IHEP04(2020)003 https://arxiv.org/abs/1808.05219

18th November 2020

LDCS | G.Mullier | Lund U

PDC S

LDMX Computing software in a nutshell

What it is

- ➤ Framework based on Geant4 (C++)
- Wrapper interface for configuration (Python)
- ➤ Three types of tasks
 - $\, {\scriptstyle {\scriptstyle \mathsf{L}}}\,$ Simulation: Geant4 Simulation with the selected geometry creation of new files
 - ↓ Reconstruction: Particle track reconstruction based on detector response based on already simulated files
 - → Analysis: User based analysis which could take either input

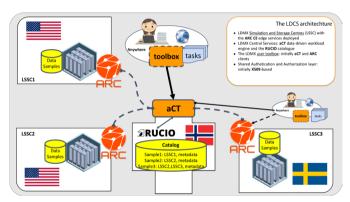
what it needs

- > Dataset cataloguing/archiving
- As much computing resources as possible to allow simulations/processing in a reasonable timescale
- Re-simulation/processing of older datasets that might have been deleted without hassle

LDMX Computing infrastructure needs

Reliable

- Small team
 Small
 Small team
 Sm
- Limited time availability including Sysadmins
- $\, {\scriptstyle {\scriptstyle \mathsf{L}}} \,$ Ambitious program with tight schedule


Scalable

 ${\scriptstyle {\scriptstyle \mathsf{L}}}$ Expansions for new institutes / resources

Data driven load balancer

L→ In our use case computing power is less an issue (though always welcome more) but storage can be limited

Our solution: Not reinventing the wheel

Advanced Resource Connector (ARC) □

Connect local resources and make them available to the system

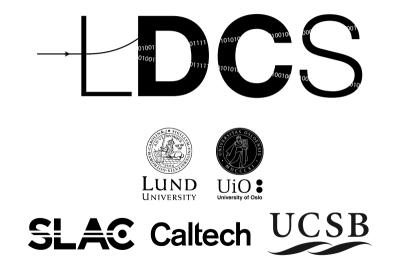
ARC Control Tower (aCT) □

Aggregate calls from external users and regulate each ARC-CE

Rucio 🗗

Data catalog management and metadata management

Advantages


- Extensive user base and extensive documentation for each of those tools.
- Everything is naturally integrated together already, for example in the ATLAS computing infrastructure
- ➤ Painless integration and set up
- Even though build for LDMX, LDCS is a general computing solution idea for small / medium scale projects

Summary

- > Easily maintainable/scalable system.
- > Not reinventing the wheel, but sometimes you do not need to.
- > Enabled LDMX to significantly boost sample producton.
- ➤ Hopefully will be back with good physics results
- \succ LDCS still evolving towards fully operational system

Thank you for your attention!

LDCS | G.Mullier | Lund U

+DCS