Synchrotron and neutron based.diffraction and
spectroscopic techniques
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Revealing orbital and magnetic ordering by RXS

e Certain TM ions are Jahn-Teller active and display distinct anisotropy
of local bonding in complexes and extended crystalline solids

e These distortions can have a profound effect on the electronic and
magnetic character often interlinked e.g. in magnetoresistant
materials whose conductivity can be controlled by the application of
a magnetic field, and very likely involved in high-T. superconductivity

e E.g. (though not conducting) Cu?* in KCuF, has a 3d° configuration in
which the hole is in the d,, , orbital so there is elongation along the
z-axis (ABO doubly occupied). The ion also has an unpaired electron
spin which gives rise to a spin-only moment.



Revealing orbital and magnetic ordering by RXS

e The structure of KCuF; is based on cubic perovskite but closer
inspection at low temperature reveals more detail.

- JT-distorted Cu?* centres are ordered in the crystal < 800K such
that the local axis of elongation alternates along any cubic edge

- The magnetic moments interact weakly with their neighbours,
freezing into an ordered array on cooling to 38 K




Revealing orbital and magnetic ordering by RXS

e Asthe energy is tuned below the Cu K edge two types of
resonant transition might be brought into play.

- 1s— 3dis dipole forbidden but probes the spin states and
orbital occupancy directly

- 1s —> 4pis dipole allowed but only probes the spin states and
orbital occupancy indirectly through (weak) 3d-4p mixing

e Both factors contribute and reveal the orbital and magnetic
order through new diffraction peaks that are forbidden in the

simple cubic structure
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Other forms of diffraction

e Small-angle scattering (SAXS) to probe the size and shape of large
objects (e.g. macromolecules in solution), material pores e.g. (bone)
and defects (e.g. inhomogeneities in engineering materials)
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Other forms of diffraction

e Reflectometry to study surfaces, interfaces and depth profiles
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Spectroscopy



e Both X-ray Absorption and Fluorescence spectroscopies - XAS
and XRF - are used as very sensitive probes of chemical
character, with spatial resolutions of the order 1 um or less

e Energy of photoelectrons may also be analysed as chemical
probe — of valence (UPS) and more tightly bound (XPS) electrons

e General experimental set-up
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Relaxation after photoionisation ?

* Photoionisation leaves a hole behind which is electronically
unstable and is rapidly filled by relaxation of higher-energy
electrons and the additional energy is carried away either by a
secondary photoionisation event (Auger effect) or photons (X-
ray fluorescence)
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XAS

Recall that X-ray absorption edges are observed for photoionisation
from bound states with successively higher values of n, | and j. Edges
get broader with n (more states with higher |, e.g. below Au)

For atoms bound in a molecule or extended solid the transitions
from core levels are similar to those in atoms, while transitions from
valence orbitals can change markedly — particularly for metals and
semiconductors where there is generally a continuum of states
(band) with empty levels below the photoionisation threshold
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XH(E)

XAS and fine structure

e Closer study of an absorption edge reveals fine structure
e XANES — X-Ray Absorption Near Edge Spectroscopy
e EXAFS — Extended X-Ray fine structure — 50-100’s eV above edge

Fe foil in energy
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XANES— X-Ray Absorption Near Edge Spectroscopy

e Closer study of an absorption edge reveals fine structure
corresponding to excitation of electrons to empty bound states and
to low-lying states in the unbound continuum

e |ntensity of transitioni — f given by Fermi’s Golden Rule:

P, ~ | <fIH"li>| 2p
p is density of states for f, and H’ is the operator representing the
effect of the light — dipole nature —so Al = £1 when f is a bound state

A
In practice this often breaks down /
because s-p, p-d mixing is allowed, ammmsen . e
particularly when the atom at the —|. %;z
centre of the study is non-centro- o0 -0—e—e-——e- | )
symmetric so can occur for isolated  Ina—
atoms and also molecules '



XANES— X-Ray Absorption Near Edge Spectroscopy

e Dependence of P illustrated by XAS for series of elements from Re
to Au - [Xe] 4f145d°6s2 to [Xe]4f145d1° 6s! - changes as 5d fills up

e All of these features may be modelled and then the model refined to
optimise the goodness of fit to the data to determine the local
binding and thus the local structure around the absorbing centre
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Mapping chemistry with p-XANES

e Effectiveness of heterogenous catalysts depends inter alia on
physical state/distribution and nature of active centres

e E.g. commercial BASF catalyst for hydrogenation of nitrobenzene to
aniline using colloidal Pt-containing catalyst (0.8wt %) supported on
carbon particles with Mo-containing promoter (0.3wt %)
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Crafting catalysts
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Crafting catalysts
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Preserving the past with X-ray spectroscopy

Sank 1545



Hull conservation
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The sulfur problem
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The sulfur problem - solved
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EXAFS

* Extended X-Ray Absorption Fine Structure — arises from the

Xu(E)

interference between the wave of a photoelectron and the waves
backscattered from neighbouring atoms, giving constructive and
destructive interference — so we need to know the wavelength A, of
these waves (destructive interference when d is odd multiple A_/2)

Fe foil in energy
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EXAFS

* Extended X-Ray Absorption Fine Structure — arises from the
interference between the wave of a photoelectron and the waves
backscattered from neighbouring atoms, giving constructive and
destructive interference — so we need to know the wavelength A, of
these waves (destructive interference when d is odd multiple A_/2)
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Fe foil in energy
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EXAFS

* In practice we convert the EXASF spectrum (i.e. absorbance nvs E) into
units proportional to the momentum of the photoelectron, i.e. as function
of wavevector k = 2n/A_ (=27tp/h) once it has been corrected for the
absorption of the free atom, py(k). Note E = h?k?/(8m°m,) from E=p?/2m,

This is called the EXAFS function, x(k) = u(ki_(i‘;(k)
0

The oscillations fall off rapidly with k so they are often multiplied by k? or
k3 to enhance them then Fourier transformed to real space to reveal the
atom-atom distribution e.g. below Ni K-edge for Ni adsorbates in the
mineral montmorillonite
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EXAFS

* In practice we convert the EXASF spectrum (i.e. absorbance pvs E)
into units proportional to the momentum of the photoelectron, i.e.
as function of wavevector k = 2rt/A, (=2ntp/h) once it has been
corrected for the absorption of the free atom, py (k).

This is called the EXAFS function, x(k) = u(ki_(i‘;(k)
0
The oscill: : - £ d by
2 or k3 to EXAFS provides an element specific o

reveal the probe of the distribution of other
adsor?ite atoms around that specific centre —
“even for non-crystalline materials
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Looking for U
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Follow incorporation of U compounds
into iron oxides by EXAFS — confirms
not only presence of element in
particular oxidation state at 1000’s of
ppm but nature of binding

Marshall et al, Env. Sci. Tech. 48 (2014) 3724



What the Heck ?
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Future limits ?

120 at Diamond will give
ppb of chemical species
- much more sensitive
chemical analysis
especially for env/earth
sciences



