
Integration of ML 
Frameworks in CMSSW

Kevin Pedro (FNAL)
December 4, 2020



CMSSW Basics
• Statistics:
o Core codebase: ~6 million lines of code
 Mostly C++ and Python
 101 subsystems, 1276 packages

o O(500) externals (outside software distributed with our releases)
o 60–100 active contributors on GitHub (open source)

• Dedicated build system SCRAM
o Recently migrated from Perl to Python!

• CMSSW uses task-based multithreading via Intel TBB
o All code must be thread-safe!
o In order of preference:

1. Use framework-supported thread-safe module (global, stream, one)
2. Use tbb or atomic operations
3. Use locks (least efficient)

2



Specific ML Frameworks
• CMSSW currently includes C++ APIs (as externals) for:

o TensorFlow, ONNX, MXNet, LWTNN, TMVA (in ROOT)

o Ongoing work to add PyTorch

• Maintenance burden for these externals is high:

o Difficult build tools (especially Bazel)

o Complex and inflexible build configurations

 Takes significant work to use existing versions of external
dependencies instead of reinstalling everything from scratch

o Thread-safety, etc. problems are common

 Even if problems are fixed (e.g. after a week of repeated helgrind runs), 
external maintainers may not accept contributed solution

3



Specific Frameworks + Coprocessors
• The C++ APIs can all be used to run inference on CPU
o Significant work in performance optimization, e.g.:
 Use OpenBLAS rather than GSL CBLAS
 Enable multi-vectorization to support multiple instruction sets

– AVX still not available on all grid CPUs
 Reduce memory usage by sharing some objects

o Some APIs are still slow (TMVA)
 CMSSW contains a custom BDT reader, ~5× faster

• Currently no support direct inference via any ML framework on GPU etc.
o Very hard to keep consistent and compatible CUDA version (for example)
 Need to consider C++ compiler versions used for CMSSW
 Different ML frameworks (and other CUDA-dependent code) may 

require different CUDA versions

4



General Approach: Direct Connect
• CMS can offload to directly-connected GPUs
o Uses ExternalWork feature (below):

asynchronous, non-blocking task-based processing
• This approach will be used for Run 3 HLT
o Classical reco algorithms rewritten in CUDA (Patatrack)

• In principle, standalone CUDA kernels could be generated for specific ML 
algorithms to utilize Nvidia GPUs
o Has not been attempted in practice; maintenance burden seems high

• Exploring compatibility libraries (e.g. Kokkos) to write code that can be 
compiled for multiple devices
o Not clear if useful for ML

External 
processing

CMSSW 
thread acquire()

FPGA, 
GPU, etc.

produce()(other work)
5



Interlude: FPGAs
• hls4ml can translate BDTs, DNNs, etc. into FPGA instructions

o Planned for use in CMS L1 trigger for Run 3

• Other avenues have also been explored:

o Xilinx ML Suite, Microsoft Brainwave, Intel OneAPI, …

• These tools are currently treated separately from CMSSW

• Possible to use similar direct connect + ExternalWork setup to access 
FPGAs from CMSSW, e.g. via OpenCL

o Has not been pursued so far

6



General Approach: Inference as a Service

• Multiple CPUs send inference requests to coprocessor server
• Ensures optimal utilization of GPUs/FPGAs, along with flexibility
• One coprocessor could serve ~100 CPUs
o Depending on conditions and requirements
o Much more cost effective than buying 1 GPU for every grid CPU…

Direct as a Service

7



SONIC Approach
 SONIC (Services for Optimized Network Inference on Coprocessors):

inference as a service in experiment software frameworks
 Use industry tools:
o gRPC, inference servers, Kubernetes
 Interact with cloud services: Azure, AWS, GCP

 Minimize rewriting and reimplementing in C++
o CMSSW modules just convert input and output data into desired formats
o Supports producers and filters, as well as analyzers (for trees or histos)
 Available in CMSSW
o Utilizes ExternalWork for asynchronous, non-blocking calls
 Minimize impact of latency

o Development aimed at production-readiness for Run 3
• Currently focused on Nvidia Triton inference server
o Previously explored tensorflow/serving

8



Triton Inference Server
• Supports all frameworks as backends

(even non-ML)
o Reduce maintenance concerns by

keeping these separate from CMSSW
• Many killer features:
o Dynamic batching (GPU throughput ↑)
 Enables multi-event processing

w/o any CMSSW framework changes
o Load balancing (for multi-GPU server)
o TensorRT optimization: reduced precision,

layer fusion, etc.
o Shared memory (for local GPU), CPU fallback

• Developed FPGA as a Service Toolkit (FaaST)
o Open source, interoperable w/ Triton gRPC calls

• Upcoming features:
o I/O compression
o “Model analyzer” to 

optimize server 
deployment

9



Conclusions
• CMS currently devotes non-trivial effort to integrate and maintain C++ APIs 

for O(6) different ML frameworks
• Even more daunting: integrating coprocessor-specific features of ML fwks
• Direct connect tooling available for Nvidia GPUs via CUDA
o Not utilized for ML so far

• Inference as a service offers best path forward for ML inference
o Simplicity: lower maintenance, separate ML frameworks from CMSSW
o Flexibility: use multiple types of coprocessors, server configurations, etc.
o Cost: 1 coprocessor can serve many CPUs
o Optimizations: easy to deploy custom instructions, reduced precision, 

dynamic batching, etc.

10



Backup


	Integration of ML Frameworks in CMSSW
	CMSSW Basics
	Specific ML Frameworks
	Specific Frameworks + Coprocessors
	General Approach: Direct Connect
	Interlude: FPGAs
	General Approach: Inference as a Service
	SONIC Approach
	Triton Inference Server
	Conclusions
	Backup

