ML FrameWorks in Athena (onnxruntime)

Debottam BakshiGupta UTA

12/04/2020

Index

- Use cases of ML frameworks in athena
- Building strategy of ML framework as a part of external software
- Resources available in athena to support existing industrial ML framework
- Best choice for atlas
- Current implementation of the framework
- Future plans

Use cases in athena

> We will be using trained neural network (NN) models in athena for prediction

- No plans for training models in athena
- The ML framework to be used must have C++ API compatible with athena
- Possible thread safe application or thread exclusive processing
 - E.g. Tensorflow spawns lots of threads by default keeping CPU busy for itself only.
- Memory management during run
 - The NN models need to be contained in minimum memory otherwise will be incompatible with trigger related application.
- Last but not the least we don't want user to deal with complexities of core software
 - There should be a way to create an abstraction layer to communicate with the user

Building strategy and Favorites

Building Strategy: After checking its compatibility with athena build the ML framework as ATLASExternals

Onnxruntime is a great tool for parsing trained model. You can train your model in any platform (e.g. tensorflow, Keras, pytorch, etc.) and convert them to .onnx format using *platform-to-onnx (* tensorflow, Keras, pytorch, etc) API. Once your model is in .onnx format you can parse and predict with your model using onnxruntime.

Name	Last commit	Last upda
Cmake	Changed the include path convention used by Findonnxruntime.cmake.	9 months a
a patches	ramping up onnxruntime_1.1.1 to onnxruntime_1.5.1	2 months a
🖹 CMakeLists.txt	Added new URL http://cern.ch/atlas-software-dist-eos/externals/onnxr	1 month a
* README.md	Added a README file for ONNX Runtime.	9 months a
README.md		
ONNX Runtim		

Athena Compatibility:

C++ API,
 Supports complex models (e.g. CNN, RNN, GAN, VAE),
 Thread exclusive processing

Onnxruntime in athena

• Where in atlas:

https://gitlab.cern.ch/atlas/atlasexternals/-/tree/master/External/onnxruntime

• Version:

Onnxruntime_v1.5.1

• How to use in athena:

In packages' CmakeLists.txt

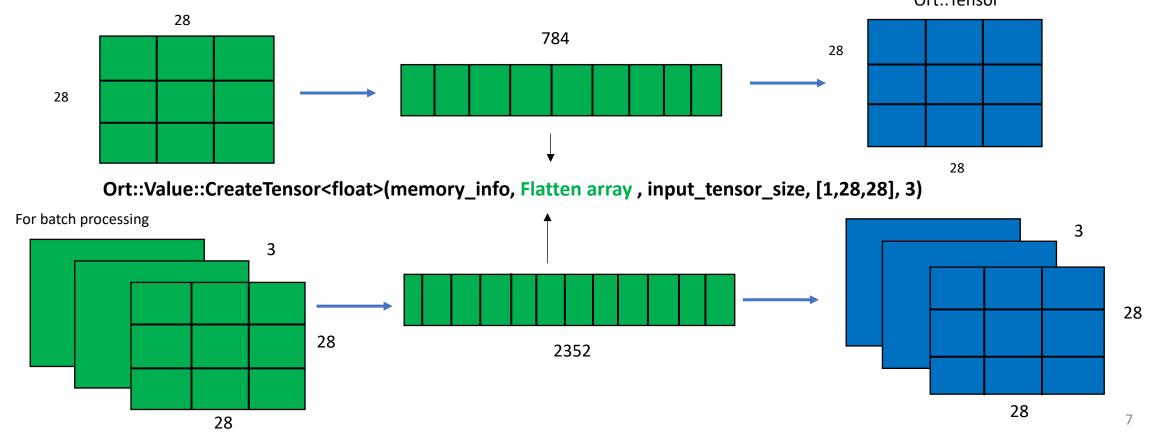
- atlas_add_library
 - INCLUDE_DIRS \${ONNXRUNTIME_INCLUDE_DIRS}
 - LINK_LIBRARIES \${ONNXRUNTIME_LIBRARIES}
- > atlas_add_component
 - INCLUDE_DIRS \${ONNXRUNTIME_INCLUDE_DIRS}
 - LINK_LIBRARIES \${ONNXRUNTIME_LIBRARIES}

Running a session in athena: use the shared service located at <u>AthOnnxruntimeService</u>. Example <u>package</u>

65	/// Handle to @c AthONNX::IONNXRuntimeSvc
66	<pre>ServiceHandle< IONNXRuntimeSvc > m_svc{ this, "ONNXRuntimeSvc",</pre>
67	"AthONNX::ONNXRuntimeSvc",
68	"Name of the service to use" };

Out of box build

- The usual cmake build of onnxruntime has a strong python 3 dependency
- The produced nightly builds may not have particular python 3 version
- A way around implemented by applying a patch file


atlas >		
master v atlasexternals / External / onr / + v	nxruntime / patches History Find file Web IDE	Clone V
ramping up onnxruntime_1.1.1 to onnxruntime_1. Debottam Bakshi Gupta authored 2 months ago	5.1	85f34746 🔓
Name	Last commit	Last update
onnxruntime-1.1.1-automl_featurizers.pat	Turned off the unit tests during the onnxruntime build.	7 months ago
onnxruntime-1.1.1-cmake.patch	upgrading to current onnxruntime release v1.1.1 ("http	9 months ago
onnxruntime-1.5.1-cmake.patch		

• Whenever switching to a new version of onnxruntime the patch files should be updated

Onnxruntime Tensor (Ort::Value)

.onnx model takes input in Ort::Value format; (here)

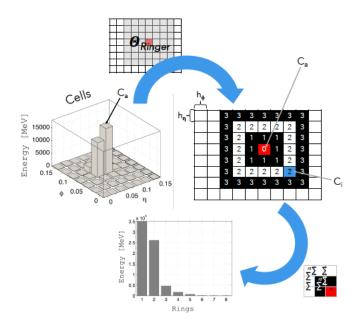
e.g. MNIST hand written digit 3D array (1, 28, 28) needs to be converted to 3D Ort::Value before being fed to a .onnx model with input layer dimension: [-1,28,28] Ort::Tensor

Successful attempts in athena (example)

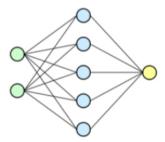
Model:	"sequential"
--------	--------------

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	0
dense (Dense)	(None, 512)	401920
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 10)	5130

ATTONNA
Ath0NNX


DEBUG Input 0 : name= flatten_input:0
DEBUG Input 0 : num_dims= 3
DEBUG Input 0 : dim 0= -1
DEBUG Input 0 : dim 1= 28
DEBUG Input 0 : dim 2= 28
DEBUG Output 0 : name= dense_1/Softmax:0
DEBUG Output 0 : num_dims= 2
DEBUG Output 0 : dim 0= -1
DEBUG Output 0 : dim 1= 10

INFO Label for the input	t test data = 1
AthONNX DEBU	JG Score for class 0 = 1.07293e-07
AthONNX DEBU	JG Score for class 1 = 0.999818
AthONNX DEBU	JG Score for class 2 = 1.18024e–05
AthONNX DEBU	JG Score for class 3 = 2.53529e–05
AthONNX DEBU	JG Score for class 4 = 4.19157e–06
AthONNX DEBU	JG Score for class 5 = 1.66088e-06
AthONNX DEBU	JG Score for class 6 = 7.7723e–06
AthONNX DEBU	JG Score for class 7 = 6.33801e–05
AthONNX DEBU	JG Score for class 8 = 5.83467e–05
AthONNX DEBU	JG Score for class 9 = 9.74693e-06
AthONNX INF	FO Class: 1 has the highest score: 0.999818


Physics Example (Ringer in Trigger electron)

Process in brief:

- Level 1: Provides Rol (θ_{RoI}) in $\eta \times \phi$ axis
- HLT : within the $\eta \times \phi$: 0.4X0.4 window of θ_{RoI} all rings are formed.
 - \blacktriangleright Ring_variables are summation of ET of all cells belonging to a ring around θ_{RoI}

100 such ET summations belonging layers $l \in \{PS, EM1, EM2, EM3, HAD1, HAD2, HAD3\}$ fed to a single layer DNN

Depending on the type of selection (loose, medium, tight) and η position there are several such trained model.

There is a scope for using CNN instead of DNN, currently being developed

WIP: RingerTool (<u>135777</u>)

Parsing model through onnxruntime

RingerSelectorTool RingerSelectorTool

5	0	INFO	Input 0 : name= dense_166_input <	
5	0	INFO	Input 0 : num_dims= 2 <	2D array
5	0	INFO	Input0 : dim 0= 1 <	Input Row size: 1
5	0	INFO	Input0 : dim 1= 100 <	Input Column size: 100
5	0	INFO	Output 0 : name= dense_167 <	Output layer name
5	0	INFO	Output 0 : type= 1	output layer hame
5	0	INFO	Output 0 : num_dims= 2 <	2D array
5	0	INFO	Output0 : dim 0= 1 <	- Output Row size: 1
5	0	INFO	Output0 : dim 1= 1	Output Column size: 1
5	0	INFO	The current model predict with output: 2.22336	•
5	0	INFO	Event et = 0.0200504, eta = 2.2236	
5	0	INFO	Output = 2.22336 Avgmu = 57.169	
5	0	INFO	Passed ? 1	

Input laver name

Other projects being supported by onnxruntime

• Offline electron ID (details in Kazuya's talk) with following input (not in master yet)

images = ['em_barrel_Lr0', 'em_barrel_Lr1_fine', 'em_barrel_Lr2' , 'em_barrel_Lr3', 'tile_barrel_Lr1', 'tile_barrel_Lr2', 'tile_barrel_Lr3', 'tracks_image'] scalars = ['p_Eratio', 'p_Reta' , 'p_Rhad' , 'p_Rphi' , 'p_TRTPID' , 'p_numberOfSCTHits' , 'p_ndof' , 'p_dPOverP', 'p_deltaEta1', 'p_f1' , 'p_f3' , 'p_deltaPhiRescaled2', 'p_weta2' , 'p_d0' , 'p_d0Sig' , 'p_qd0Sig', 'p_nTracks', 'p_sct_weight_charge'] others = ['eventNumber', 'p_TruthType', 'p_iffTruth', 'p_LHTight', 'p_LHMedium', 'p_LHLoose', 'p_eta', 'p_et_calo', 'p_LHValue']

- DNNCaloSim (offline reconstruction, see related talks)
- ML-based classification/calibration to topoclusters (talks)
- Offline <u>CaloMuon ID</u> in athena/master.
- We are providing more example (<u>138835</u>) to incorporate batch processing in onnxruntime.

Summary and outlook

- Currently onnxruntime has become no. 1 choice as ML framework for athena as it ticked off preliminary requirements
 - C++ API,
 Supports complex models (e.g. CNN, RNN, GAN, VAE),
 Thread exclusive processing
- However we believe we still need further tests to prove its robustness and longevity.
 - We invite people in atlas to incorporate onnxruntime in their ML related work; that is the way I believe we can know more and find its limitations and required areas of improvement.
- We tried to keep onnxruntime inference straight forward as possible but we definitely see a scope to make an abstraction of C++ API as an ML service (like other services in athena).