Synchrotron and neutron based.diffraction and
spectroscopic techniques
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Neutron-matter interactions (2)

* The small magnetic moment on the neutron means that it is sensitive to
scattering from ordered magnetic moments in materials. In contrast with X-
rays, the strength of this scattering is comparable to the nuclear scattering

and the data relatively easy to interpret.
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Magnetic scattering

* The small magnetic moment on the neutron means that it is sensitive to
scattering from ordered magnetic moments in materials. In contrast with X-
rays, the strength of this scattering is comparable to the nuclear scattering
and the data relatively easy to interpret.

* The majority of materials that show long-range magnetic ordering on cooling
do so antiferromagnetically. This often leads to an expansion of the unit cell
(for example a doubling of the cell edge, so that reflections at (h 0 0) may
now be accompanied by reflections at (h/2 0 0)

* For the much less common case of a ferromagnet, the magnetic structure

maps directly onto the nuclear structure with reflections at (h 0 0)
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Magnetic scattering

* Scattering from the ordered magnetic structure gives additional intensity
relative to scattering just from the nuclear structure.

* This can be modelled or refined just as for the nuclear structure
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Magnetic transitions, structures and devices

 Variable-temperature powder diffraction reveals the onset of magnetic
order; in principle one can also refine the structure from a starting model

* Neutron beams can be polarised (spin ‘up’ or ‘down’) and the polarisation
dependence of the scattering from single crystals provides the most incisive
probe of magnetic structure

* Magnetic reflectometry may also be performed to depth profile magnetic
films and layered structures such as those used in magnetic storage media
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Atomic and molecular motion in materials

* Atomic and molecular vibrations, rotations and translations are essential to
key processes in materials e.g. thermal conductivity and expansion,
polymer processing and properties, biochemical processes, magnetic
storage media, superconductors




Atomic and molecular motion in materials

 Diffusion, rotation and vibrations span a wide range of energies and
timescales (s-fs) and are commonly studied by NMR, microwave, IR and
Raman spectroscopy, as well as computational techniques (MD)
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Neutron-matter interactions (3) - excitations

 Measure the energy (E) and the momentum of the neutron before and
after scattering and determine the energy of the excitation and some
measure of the amplitude (molecules) or the momentum (k, solids)

* Thermal neutrons typically have energies comparable to vibrations
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Inelastic neutron scattering

* Match spectrometers to different energy regimes (use hotter or colder
neutron — shorter or longer wavelength) with different resolution specs.

* Look at change in energy on scattering to probe diffusion and rotation
(quasielastic) — particularly with H (strong scatterer)
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Inelastic neutron scattering

* Match spectrometers to different energy regimes (use hotter or colder
neutron — shorter or longer wavelength) with different resolution specs.

* Look at change in energy on scattering to probe diffusion and rotation
(quasielastic) — particularly with H (strong scatterer)
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Inelastic neutron scattering

 Match spectrometers to different energy regimes (use hotter or colder
neutron — shorter or longer wavelength) with different resolution specs.

* Look at change in energy on scattering to probe diffusion and rotation
(quasielastic) and vibrations (inelastic) particularly with H (strong scatterer)
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Inelastic neutron scattering

 Match spectrometers to different energy regimes (use hotter or colder
neutron — shorter or longer wavelength) with different resolution specs.

* Look at change in energy on scattering to probe diffusion and rotation
(quasielastic) and vibrations (inelastic) particularly with H (strong scatterer)
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Excitations in solids

* In solids we see structural excitations of the lattice in the form of waves
(phonons) characterised by the relationship between energy and wavelength
— conventionally expressed as plot of E vs k (21t/A).

* The full range of excitations runs from the undisturbed lattice (A=00) to the

maximum disturbance where a neighbouring atom is 180°out of phase (A=
2a)
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Excitations in solids

* In solids we see structural excitations of the lattice in the form of waves
(phonons) characterised by the relationship between energy and wavelength
— conventionally expressed as plot of E vs k (21t/A).

* The full range of excitations runs from the undisturbed lattice (A=00) to the

maximum disturbance where a neighbouring atom is 180°out of phase (A=
2a)
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Excitations in solids

* In solids we see structural excitations of the lattice in the form of waves
(phonons) characterised by the relationship between energy and wavelength
— conventionally expressed as plot of E vs k (21t/A).

* Analogous phenomena are observed in ordered magnets where we see ‘spin
waves’ or magnons’ — maximum energy at JS? for spins S coupled through J
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Mapping excitations in solids

* Neutrons allow us to map out E as a function of the momentum k of the
excitation — either point-by-point with a TAS, or as whole slices of E-k space
with ToF instruments (k, g, Q sometimes used interchangeably)
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Inelastic neutron scattering

* Thermal neutron energies are particularly well matched to excitation
energies (typically enabling probes from <1 meV to 100 meV)

* Provide a simultaneous measure of the energy of the excitation and its
wavelength or amplitude

* No selection rules as for IR and Raman (and low amplitude easier to ‘see’)

* Highly penetrating — study deep inside materials

e Particularly sensitive to H
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Inelastic X-ray Scattering

“When a crystal is iradiated with X-rays, the processes of photoelecinc absorpbion and fluorescence are
no doubt accompanied by absorption and emission of phonons. The energy changes involved are how-

ever so large compared with phonon energies that information about phonon spectrum of the crystal can-
not be obtained in this way. The same is true for Compton scattening.™ W.Cochran, 1966.



Inelastic X-ray Scattering

“When a crystal is irradiated with X-rays, the processes of photoelectric absorption and fluorescence are
no doubt accompanied by absorption and emission of phonons. The energy changes involved are how-
ever so large compared with phonon energies that information about phonon spectrum of the crystal can-
not be obtained in this way. The same Is true for Compton scattering.™ W Cochran, 1966.

* Typically wish to measure vibrations and magnetic excitations in the range 1-100 meV

as a function of k (10/7») so the wavelength of the neutrons or X-rays should typically be
of the order of 1-2 A (0.1-0.2 nm)

* 1 A corresponds to 12.4 keV for X-rays and 81.8 meV for neutrons so instrumental
resolution is much more challenging for X-rays (10 meV: AE/E = 10 vs 101 IXS vs INS)
though modern IXS beamlines can approach AE/E = 10, enabling study of much
smaller samples (neutrons typically down to 1 mm beam, X-rays of order of 1 um)
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e Typically wis'

Inelastic X-ray Scattering

“When a crystal is irradiated with X-rays, the processes of photoelectric absorption and fluorescence are
no doubt accompanied by absorption and emission of phonons. The energy changes involved are how-
ever so large compared with phonon energies that information about phonon spectrum of the crystal can-
not be obtained in this way. The same Is true for Compton scattering.™ W Cochran, 1966.
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