Quantum Simulation and Information Theory

Dorota M Grabowska

CERN TH

D.M. Grabowska

QTI First Brainstorming Session

12/11/2020

Particle Physics Theory

Modern day particle physics demands large scale computing

<u>High Energy Collisions</u> Monte Carlo simulation of hard, soft and hadronizing process

12/11/2020

*RHIC

2

D.M. Grabowska

QTI First Brainstorming Session

Particle Physics Theory

Modern day particle physics demands large scale computing

<u>Cosmology/AstroParticle</u> Evolution of axion field in early universe

Animation: https://www.youtube.com/watch? v=IByIDMqIEpl&ab_channel=MalteBuschmann

arxiv: 1906.00967

Lattice QCD Monte Carlo evaluation of euclidean correlation functions

D.M. Grabowska

QTI First Brainstorming Session

Entanglement provides two important benefits

More efficient encoding

Small number of qubits corresponds to large number of states

Qubits	Unique Numbers
2	3
5	31
10	1023
30	1073741823
n	$2^{n} - 1$

D.M. Grabowska

QTI First Brainstorming Session

Entanglement provides two important benefits

More efficient encoding

Small number of qubits corresponds to large number of states

Qubits	Unique Numbers
2	3
5	31
10	1023
30	1073741823
п	$2^{n} - 1$

More efficient running

Built-in parallelism as computation is carried out on all $2^n - 1$ states simultaneously

Ex: Factorization Algorithms

Classical: one number at a time

Quantum: all at the same time

D.M. Grabowska

Two places where we could benefit

<u>Speed-up</u>

"We can do this using classical algorithms, but it is just slower than we would like" **Feasibility**

"We cannot do this at all using classical algorithm within any reasonable time"

Ex: Low-lying hadronic spectrum

Ex: QCD at finite density

Two places where we could benefit

Speed-up

"We can do this using classical algorithms, but it is just slower than we would like"

Feasibility

"We cannot do this at all using classical algorithm within any reasonable time"

NOTE: Algorithmic developments can move a system of interest from "feasibility" to "speed-up" column

Generating Configurations in Lattice QCD

Physical pion mass, 100 configs, 192 x 96³ lattice points with lattice spacing of 0.064 fm

Two places where we could benefit

Speed-up

"We can do this using classical algorithms, but it is just slower than we would like"

Feasibility

"We cannot do this at all using classical algorithm within any reasonable time"

NOTE: Algorithmic developments can move a system of interest from "feasibility" to "speed-up" column

Generating Configurations in Lattice QCD

Physical pion mass, 100 configs, 192 x 96³ lattice points with lattice spacing of 0.064 fm

Cost in 2001:640 billion core hours

Cost in 2020 : 20 million core hours

QTI First Brainstorming Session

Speed-Up

Example: Properties of low lying hadron spectrum from lattice QCD

Calculational Needs

Small lattice spacing for appropriate UV regulator scale

Large box size to "fit" confined particles

Classical Hardware

Quantum Hardware

20 million core hours

Naive Number of Qubits $\sim 20 \times 192 \times 96^3 \approx 3 \times 10^9$

So maybe not something for the Noisy Intermediate-Scale Quantum (NISQ) era...

D.M. Grabowska

QTI First Brainstorming Session

Feasibility

Example: QCD at Finite Baryon Density

Working in Euclidean allows for Monte Carlo evaluation of correlation functions in some system...

Pure Glue $Z = \int dU e^{-S[U]} \quad \longrightarrow \quad \langle \mathcal{O} \rangle \approx \frac{1}{N} \sum_{n} \mathcal{O}_{n}$... but not all.... Finite Density QCD $Z = \int dU \det(D[U] + m + \mu \gamma_{0}) e^{-S[U]}$ Highly oscillatory*

> Idea: Quantum computation will not require Monte Carlo for these types of calculations

*arxiv: 0609076

12/11/2020

8

D.M. Grabowska

QTI First Brainstorming Session

Theory Branch

One of Our Overarching Goals

Calculate the phenomenological properties of the Standard Model and Beyond, ideally with quantifiable errors

More specific research interests

(not an exhaustive list!)

Neutrino Physics

pQCD

String Theory

Collider Physics Hadron Spectrum Chiral Gauge Properties of Quark Theories Gluon Plasma Inflation Parton Showers Low energy inputs Dark Matter to experiment **Higgs Physics** Cosmology 9 D.M. Grabowska **QTI First Brainstorming Session** 12/11/2020

Theory Branch

Possible avenues to explore

Classical Simulation

Software development for quantum simulators on classical hardware

<u>Replacing Existing</u> Codes

Investigating hybrid classical-quantum algorithms

Quantum Information

Error correction and mitigation

Speed-up

D.M. Grabowska

QTI First Brainstorming Session

Theory Branch

Possible avenues to explore

QCD Applications

Simulations for collider physics

QCD phase diagram

Hadronic physics

Multi-loop amplitude calculations

Heavy Ion Simulation

High multiplicity collisions

Non-equilibrium phenomena

Quark-Gluon Plasma

BSM + Cosmo Applications

Early Universe simulations

Neutrino Oscillations

Feasibility

D.M. Grabowska

QTI First Brainstorming Session

What's Already Out There

(Just a sampling)

D.M. Grabowska

QTI First Brainstorming Session

Foundations of QFT Algorithms

Scattering Algorithm

Idea: One-to-one mapping of continuum procedure to discretized spacetime*

- I. Prepare ground state of free theory
- 2. Excite wavepackets of free theory
- 3. Adiabatically turn on interactions
- 4. Evolve with fully interaction Hamiltonian
- 5. Measure

D.M. Grabowska

QTI First Brainstorming Session

12/11/2020

13

Foundations of QFT Algorithms

Scattering Algorithm

Idea: One-to-one mapping of continuum procedure to discretized spacetime

Digitization

Idea: Encode finite number of field values onto qubits

arxiv: 1808.10378

Finite Volume Effects

Idea: Ramifications of finite volume in Minkowski simulations unclear

arxiv: 2007.01155

D.M. Grabowska

QTI First Brainstorming Session

Gauge Theory Formulations

Hamiltonian Formulation

Question: How do you encode gauge invariance into a Hamiltonian formulation, using a minimal amount of qubits

Complications

<u>Satisfying Gauss's Law</u> Gauge Invariance <u>Truncation of Hilbert space</u> Define computational basis

Eliminate non-physical states Reduce qubit cost

Lot of work already done on this question (happy to provide resources for specific questions)

D.M. Grabowska

QTI First Brainstorming Session

Software Packages

Multiple software packages that allow for quantum simulation on both classical and quantum hardware

<u>Qiskit</u>

Testbeds for ideas and algorithms in the NISQ era

Measurement of GHZ State

*arXiv: 2009.01845

D.M. Grabowska

QTI First Brainstorming Session

Summary

Modern day particle physics demands large scale computing

Quantum computing may allow us to probe interesting and highly relevant systems that are currently inaccessible classical computing

There is a lot of room for collaboration with other branches

Quantum technology is an exciting new frontier

We are just getting started!

D.M. Grabowska

QTI First Brainstorming Session