

Dark Matter: Evidence & Detection

→ nuclear recoil

Direct Detection: Elastic Scattering of WIMP WIMPs off target nuclei

Radius (kpc)

DARWIN - Overview

DARWIN — Dark Matter WIMP Search with Noble Liquids

- R&D and Design Study for a next generation noble liquid facility in Europe. Approved by ASPERA in late 2009
- Coordinate existing European activities in LXe and LAr towards a multi-ton Dark Matter facility
- Physics goal: probe WIMP cross sections well below 10⁻⁴⁷ cm²

DARWIN: Dual Phase TPC

Goals and Structure

R&D and Design Study for

Light/Charge Readout, Electronics/DAQ, Detector/Underground/Shield Infrastructure, Material Screening/Backgrounds, Science Impact

Multiton LXe and/or LAr WIMP detector find best choice/design, exploit complementarity?

ArDM, WARP, XENON Groups:

UZH (CH), INFN (I), ETHZ (CH), Subatech (F), Mainz (D), MPIK (D), Münster (D), Nikhef (NL), KIT (D), IFJPAN (PL)

+ Columbia, Princeton, UCLA (USA)

http://darwin.physik.uzh.ch

DARWIN is a Design Study for a next-to-next generation Dark Matter detection experiment based on LXe/LAr

Most technical requirements have not beed defined yet.
They are the outcome of the DARWIN study.

Key Requirements:

- lowest radioactivity
- large number of channels
 [~O(1000) → large data amount]
- high sensitivity (QE) in order to reach low threshold
- large area sensors
- operation in cryogenic liquid
- moderate cost

3 Workpackages (WP)

WP3: Light Readout

Photodetectors

- (a) large area PMTs
 - low radioactivity
 - high QE, high collection efficiency
 - operation at cryogenic temperatures
- (b) hybrid detectors with large cathode and solid state e-multiplier (QUPID)
 - extremely low radioactivity
 - for LXe and LAr

"Classic" Approach: The same photosensors detect S1 (light) and S2 (charge) signal.

UV light collection

- (a) co-doping of Ar with Xe (→ shift light emission)
- (b) LAr: wavelength shifters, coating of light sensors
- (c) surface properties of materials (reflection, diffusion)
- (d) 4 geometry: challenges? Light guides?

WP4: Alternative Charge Readout

Idea:

- good position resolution for signal / background discrimination
- charge cloud in TPC is very localized (<1 mm)
- large scale charge readout structures can keep this information

Goal: Investigate and develop new concepts for readout of ionization produced in keV energy events, independent of scintillation readout.

Approach:

- (a) Large cryogenic LEM / THGEM / Micromegas for noble liquids
 - → charge amplification in holes (GEM)
- (b) Gaseous PMTs without dead zone
 - → separation with MgF₄ window allows use of quencher
- (c) CMOS pixel detector coupled to electron multipliers (GridPix)
 - → low radioactivity is possible

WP5: Electronics, DAQ

Goal: identify electronics, DAQ, and data processing solutions for large-scale noble liquid experiments

1. Low noise electronics for light and charge readout

- amplifiers for QUPIDs / charge readout structures
- FADCs: large bandwidth and fast sampling (100 MHz 1 GHz)
- intelligent data reduction algorithms (long drift times)
- cabling studies
 (→ purity, cross talk)
- study possibility to digitize directly on sensor

2. DAQ and trigger

- intelligent trigger, multi-stage trigger
- multi-hit veto, high energy veto, first online analysis

3. Common computing resource center

- increased demand for computing power
- MC, data storage, duplication, processing, analysis

Summary

• DARWIN:

- a multiton LXe/LAr detector to explore cross sections well below 10⁻⁴⁷ cm²
- design study approved by ASPERA, timeline 2010 — end 2012
- outcome will be a proposal for the DARWIN facility

Technical Challenges:

- lowest radioactivity
- large number of channels
- high sensitivity (QE)
- large area sensors
- operation in cryogenic liquid
- moderate cost

http://darwin.physik.uzh.ch