Direct Dark Matter Search with EURECA

APERA Technology Forum 2010
Schloss Nymphenburg

Motivation for Dark Matter Detection

Cold Dark Matter present at all scales in the Universe...

Essential part of a consistent picture

Galaxy

Clusters

Present picture of the universe:

Search for a well motivated Dark Matter candidate:

WIMP = Weakly Interacting Massive Particle

CMB

Detection principle:

Direct detection via nuclear recoil measurement

Where to go ...

$$\sigma = 10^{-6} \text{ pb}$$
:

- ~1 event/kg/day
- ~ 0.1 now reached

$$\sigma = 10^{-8} \text{ pb:}$$

~1 event/kg/year Present phase II experiments

$$\sigma = 10^{-10} \text{ pb}$$
:

~10 events/ton/year Next generation requires further x100 improvement!

EURECA

European Underground Rare Event Calorimeter Array

- Direct detection of Dark Matter via nuclear recoil measurements
- European Future of Dark Matter Searches with Lowtemperature detectors (~10mK)
- Started March 2005; based initially on CRESST, EDELWEISS and ROSEBUD, with additional groups joining
- Target materials: Ge, CaWO₄, ZnWO₄ etc. (check A² dependence)
- Mass: above 100 kg towards 1 ton
- CRESST-II and EDELWEISS-II are EURECA preparation
- Aligned with European astroparticle roadmap recommendations: multiple targets and multiple techniques

EURECA Combining Detection Techniques

Phonon - Charge (EDELWEISS)

Ge detectors with surface event rejection (interdigit)

Phonon - Scintillation (CRESST, ROSEBUD)

Event by event discrimination in scintillating CaWO₄ detectors

Phonon-scintillation technique allows flexibility in choice of target materials: ZnWO₄, CaMoO₄, BGO, Al₂O₃, Nal ...

Preliminary Cryostat Design

Detector columns

Present Design of EURECA at LSM Extension

Planned extension

Existing LSM laboratory

2 individual cryostats

Shielding: ~3m of water

Instrumented water (PMTs) acting as active muon-veto

Cleanrooms and infrastructure

PMT Requirements

Design phase (2010-2011):

PMTs from industry with best achievable quantum efficiency in the ultra-violet and cost-effective auxiliary electronics

Prototyping phase (2012-2013, depending on ULISSE timescale):

~10 PMTs and auxiliary electronics for design confirmation -> decision on number of PMTs needed

Construction phase (2013- ...):

Need for full number of PMTs (100 - 200) and auxiliary electronics

R&D of PMTs and Electronics for EURECA

 PMTs for water-Cherenkov using "standard technology" (i.e. 8" PMTs)

PMT issues:

choice of PMTs in terms of intrinsic purity, encapsulation of PMTs, no real R&D needed

Auxiliary electronics issues:

- R&D might be necessary e.g. for development of low-noise and low-power and high resolution analogue-to-optical coupling at T=100K
- Conversion of preamplified signals analogue-to-optical via LEDs
- Extraction of low-temperature detector signals via 10m of optical fibre through water tank to outside electronics for digitisation and further processing

Conclusions

- EURECA is next generation direct Dark Matter search experiment based on low-temperature detectors
- Needs in terms of PMTs rather modest >100PMTs for water
 Cherenkov detector as muon veto
- No "real" R&D necessary for PMTs
- For auxiliary electronics "partial" R&D required

Additional Slides

Neganov-Luke Amplification for Light Detection

Neganov-Luke amplification principle:

- Incident photons create electron-hole pairs in semiconductor crystal
- Drift of charge carriers in an external electrical field generates additional phonons
- **→** Amplification of phonon signal:

$$E_{tot} = \left(1 + \frac{eU}{\varepsilon}\right) E_0$$

Detector design:

- Avoid diffusion of metals (e.g. gold) into semiconductor lattice
- → Composite detector design (CDD)
- Iridium-gold transition edge sensor (TES) with tunable T_c (~20-60mK)
- Main photon absorber: silicon with evaporated aluminum electrodes

Ultrasensitive Light-Detectors

0.05 Signal without amplification (U = 0V)

-0.01 -6 -4 -2 0 2 4 6 8 10 12

- Amplification up to a factor of 13
- Gain in signal-to-noise ratio: ~10
- → High relevance for direct Dark Matter search with light-phonon technique (CRESST/EURECA)
- → Enhanced separation threshold of electr. and nucl. recoil bands (at low phonon energies)
- → More accurate determination of Quenching Factors (QFs)

Neutron Scattering with Improved Light-Detection

→ Tested successfully during beamtime in April 2010

