The XENON1T Experiment for Dark Matter Detection

Elena Aprile Spokesperson Columbia University

ASPERA Technology Forum Munich, October 22 2010

XENONIT Collaboration

Columbia University Rice University UCLA University of Zurich Coimbra University LNGS & INFN Shanghai Jiao Tong University MPIK Bologna University Muenster University Subatech Nikhef Weizmann Institute Johaness Gutenberg University Mainz

XENON10

Achieved (2007) σ_{SI}=8.8 x10⁻⁴⁴ cm² Phys. Rev. Lett. **100**, 021303 (2008) Phys. Rev. Lett. **101**, 091301 (2008)

The XENON Roadmap

Expected (2011) σ_{SI}~2x10⁻⁴⁵ cm²

Phys. Rev. Lett. **105**, 131302 (2010)

Goal: σ_{SI} ~10⁻⁴⁷ cm²

Dark Matter Direct Detection: State-of-the-Art

XENON100: Results from 11 days!

PRL conservative limit PRL best fit limit Profile Likelihood limit taking into account full log(S2/S1)-Energy space and systematic uncertainty on Leff

XENON1T Physics goals: 100 x more sensitivity

- > XENON1T is based on a 2.5 ton XeTPC inside an active muon veto (water Cherenkov)
- > aligned with US (and European) roadmaps: a G2 experiment as supported by PASAG

XENON1T Infrastructure

Baseline Location: LNGS

Alternative Location: LSM

The Detector

The XENON two-phase TPC

- > > 99.5% ER rejection via Ionization/Scintillation ratio (S2/S1)
- > 3D event-by-event imaging with millimeter spatial resolution

Requirements on PMTs

- Large area (~ 1 m²) coverage
- >VUV sensitive
- ≻QE (178nm) > 30%
- ➢ operating in range -110 C to 50 C
- > withstand up to 5 bar
- >ultra low radioactivity (U/Th < 1 mBq/PMT)</pre>
- >ideal geometry is 2" square & compact

PHOTOMULTIPLIER TUBE

PRELIMINARY DATA SHEET Oct, 2009

R8520-406

Bialkali Photocathode, Low Profile, Radioactivity is about 15 mBq/PMT MAX 26mm (1 Inch) Square, 10-stage, Head-on Type, Synthetic Silica Window

General

	Parameter	Description / Value	Unit
Spectral Response		160 to 650	nm
Window Material		Synthetic silica	•
Photocathode	Material	Biakali	-
	Minimum Effective Area	20.5 x 20.5	mm
Dynode	Structure	Metal channel Dynode	-
	Number of Stages	10	•
Weight		Approx. 23	8
Operating Ambient Temperature		-110 to +50	deg. C
Storage Temperature		-110 to +50	deg. C

Maximum Ratings (Absolute Maximum Values)

Parameter		Value	Unit
Supply voltage	Between Anode and Cathode	900	v
Average Anode Current		0.1	mA
Pressure-resistance		5	sim

Characteristics at 25 deg. C

Parameter		Min.	Typ.	Mar.	Unit
Cathode Sensitivity	Luminous (2856K)	-	100	-	uA/Im
	Quantum Efficiency at 175 nm	-	30	-	%
Anode Sensitivity	Luminous (2856K)	-	100	-	A/m
Gain		-	1.0 x 10 ⁶	-	-
Anode Dark Current (after 30 min. storage in darkness)		-	2	20	nA
Time Response	Anode Pulse Rise Time	-	1.8	•	118
	Transit Time Spread (FWHM)	-	0.8	-	118

Saturday, October 30, 2010

The XENON10 Photomultipliers

- Hamamatsu R8520 1"×3.5 cm
- bialkali-photocathode Rb-Cs-Sb,
- Metal Channel; 10 dynodes
- Quartz window; at -100°C and 5 bar
- Quantum efficiency > 20% @ 178 nm
- Custom HV divider on Cirlex base

Saturday, October 30, 2010

The XENON100 Photomultipliers

XENONIOO: The PMTs

Bottom Array

- 242 PMTs (Hamamatsu R8520-06-AI)
- 1 " square metal channel developed for XENON
- Low radioactivity (<1 mBq U/Th per PMT)
- 80 PMTs for bottom array (33% QE)
- 98 PMTs for top array (23% QE)
- 64 PMTs for top/bottom/side Veto (23% QE)

XENON1T Photosensors & DAQ Requirements

QUPID (QUartz Photon Intensifying Detector)

New 3" QUPID (Production Version)

Quantum Efficiency (QHA63, 64)

Summary of QUPID

> Extremely low radioactivity:

- < 0.1 neutron / year</p>
- < 10 times lower than conventional low radioactive PMTs.</p>

> Large diameter:

• 6 inch is also under investigation.

> Special Photocathode:

- > 40 % QE at 170 450 nm
- Low resistivity even at Liquid Ar temperature (- 185 °C)

> True photon counting.

- 1, 2, 3... photoelectron peaks clearly visible.
- 100% collection efficiency.

Simple HV supply.

- Common HV (-6 kV) for all QUPIDs
- Resister chain not necessary

The first successful operation in LXe at UCLA

Saturday, October 30, 2010

Bialkali LT

< 1 mBq

3 inch

The 3" Hamamatsu R11410-SEL-MOD

Special Bialkali Photocathode (LT)

same family as R11065 successfully tested in LAr **High Quantum Efficiency for LXe Light:**

> 34% @ 175 nm

3", 12 stages, High Gain: > 5 x 10⁶

Low Radioactivity:

Original tube too high in U, Th, Co

Lower radioactivity version (R11410-SEL-MOD) currently screened

	$\rm R8520~[mBq/cm^2]$	$R11410 \ [mBq/cm^2]$
$^{238}\mathrm{U}$	0.023	0.134
232 Th	0.026	0.066
^{40}K	1.705	1.096
60 Co	0.093	0.184

Ceramic Stem

Requirements on Electronics and DAQ (XENON100 Example)

- digitize the full waveform (up to 320µs of 242 PMTs)
- minimize the deadtime
- high rate capability for calibration

- Circular buffer
- on board FPGA for Zero length suppression

Maximum acquisition rate ~60Hz

XENON1T: Parallelization

- idea: read clusters of ADCs independently and reconstruct events offline on cluster
- common trigger, common hardware clock, common veto

