

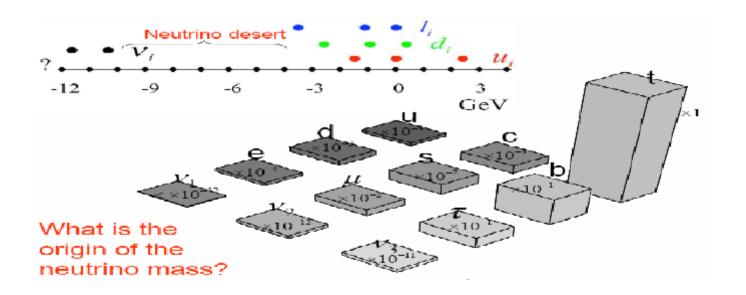
GERDA and Photosensors

Peter Grabmayr

Kepler Center for Astro and Particle Physics Eberhard Karls Universität Tübingen Germany

Russia Poland Belgium Switzerland

neutrino mass

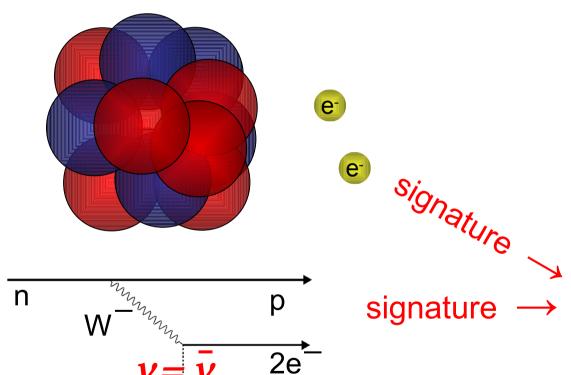


Oscillations: neutrinos have finite mass!

Neutrinos: are they Dirac or Majorana particles?

What is the origin of the neutrino mass?

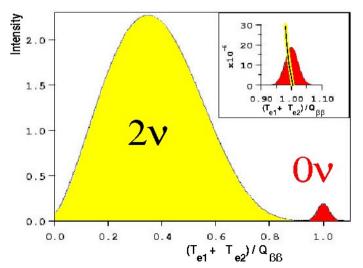
Masses in the Standard Model SUSY / Higgs


neutrinoless double beta decay

2nd order allowed weak process

$$(A,Z) \to (A,Z+2) + 2 e^{-}$$

 $(0\nu\beta\beta)$



Gamow-Teller and Fermi

$$|M_F - (g_a/g_v)^2 M_{GT}|^2$$

Neutrino = Anti-Neutrino (Majorana type)

- must have finite mass
- violation of lepton number conservation ΔL=2

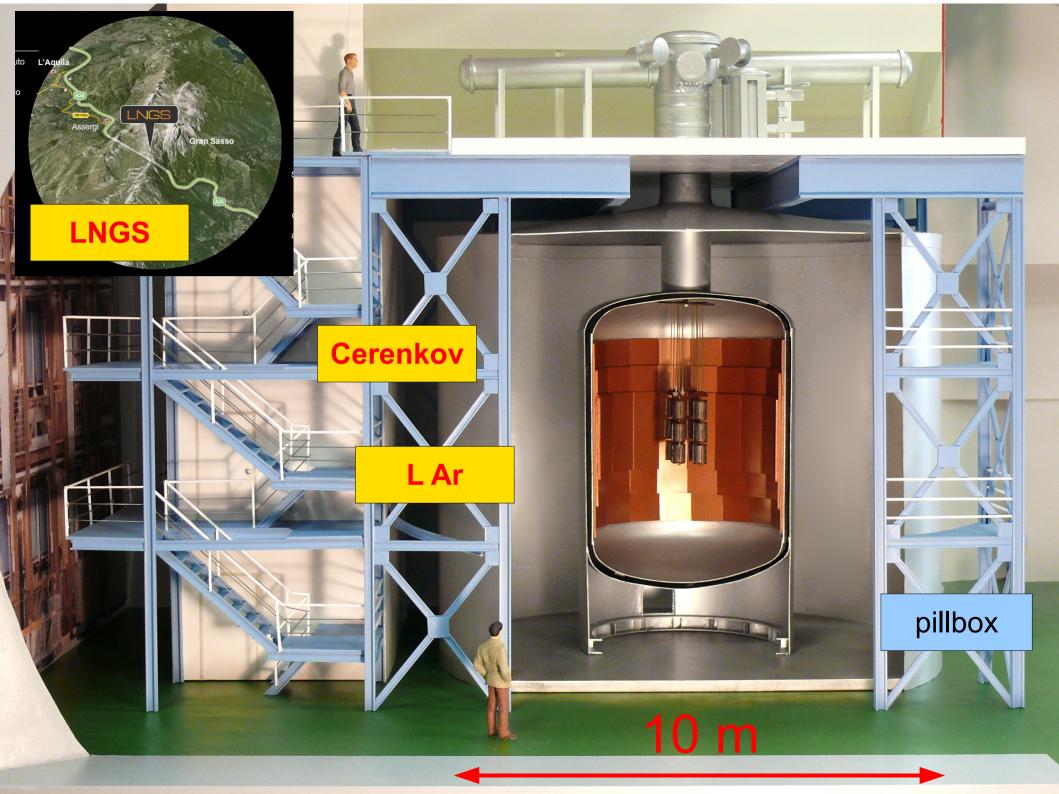
P. Grabmayr, Kepler Center Tübingen

back of the envelope

assume background free experiment with $T_{1/2} >> t$

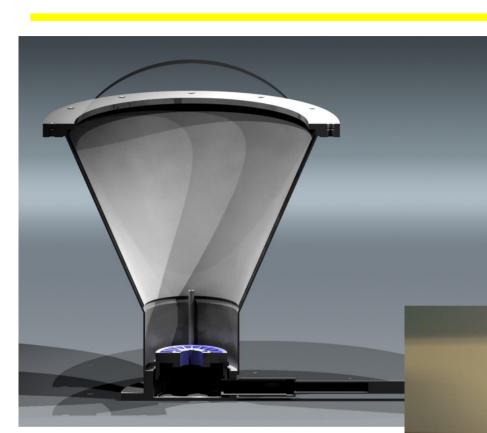
For half-lifes of
$$T_{1/2} = 10^{25}$$
 yrs $N_{\beta\beta}$ / t = 1 event / yr

$$T_{1/2} = In2 \cdot (N_A/A) \cdot M \cdot (N_{\beta\beta}/t)^{-1}$$


This is about 10 moles of isotope, implying ~kg

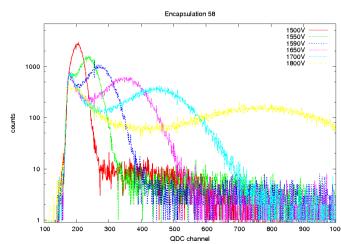
for ⁷⁶Ge: 2,1 kg @ 86% enriched

Now you only can loose:


nat. abundance a, efficiency &, background B, ...

1g GeO₂ for 50 €

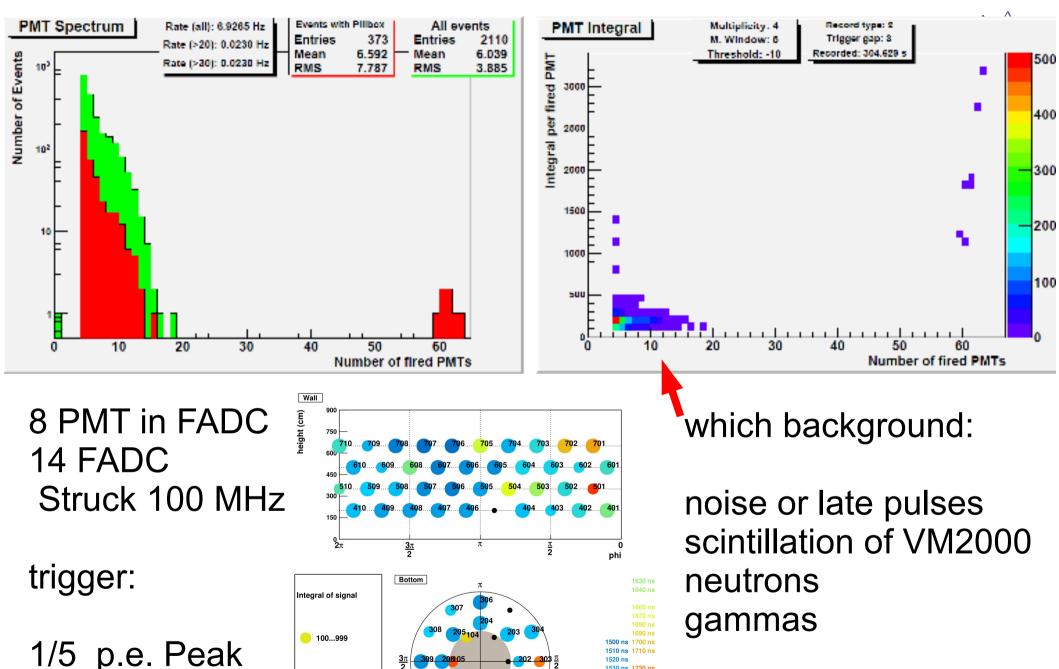
Cerenkov muon veto in water tank



ETL9350 ETL9354

8'

ASPERA, October 22, 2010


P. Grabmayr, Kepler Center Tübingen

ASPERA, October 22, 2010

within 60 ns

4 FADC fire

1000...9999

Event 16

1 PMTs fired

Stainless Steel Cryostat

double walled SS container screening of SS sheets from different

producers (\sim 27 tons of SS 1.4571) <0,8 mBq/kg ²²⁸Th & < 17mBq/kg ⁶⁰Co

LN₂ test

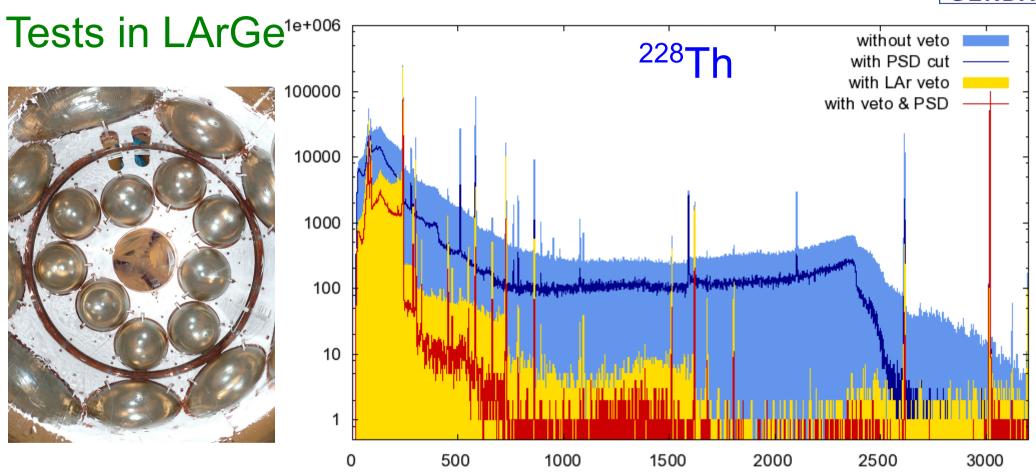
evaporation

< 4Nm³/h 300 W

 222 Rn: ~ 30 mBq

4 m

reduce Cu shield from 40 to 16 t


(1t ~ 8000 €)

P. Grabmayr, Kepler Center Tübingen

veto through scintillation in LAr

energy [keV]

In ROI @ 2039 keV

red. factor ~1000

ETL ultra-low background PMT glass samples MPIK internal note, 15.9.2005

Gamma spectrometry:

Longlived	Measured	Neck (MPI-K Heidelberg)		Bulb (MPI-K Heidelberg)		Bulb (IRMM Geel)	
mother	Isotope	A [Bq/kg]	Conc. [ppb]	A [Bq/kg]	Conc. [ppb]	A [Bq/kg]	Conc. [ppb]
²²⁶ Ra	²¹⁴ Pb + ²¹⁴ Bi	2.04(21)	165(17)*	2.01(19)	163(15)*	$1.67(10)^{10}$	
²²⁶ Ra	²²⁶ Ra	1.62(42)		2.01(48)		1.95(18)	
²³⁸ U	²³⁴ Pa	< 6.4		< 4.5			
²³⁸ U	²³⁴ U					< 0.065	< 5.2*
²²⁸ Th	²¹² Pb + ²⁰⁸ Tl	0.29(7)	72(18)**	0.21(6)	51(14)**	0.165(13)	
²²⁸ Ra	²²⁸ Ac	0.21(14)		0.25(10)		0.190(20)	47(5)**
40K	⁴⁰ K	2.47(59)	80000(19000)***	1.75(43)	57000(14000)***	1.69(15)	54000(4800)***
¹³⁷ Cs	¹³⁷ Cs	< 0.37		< 0.37		0.018(3)	_

nul U concentration (secular equilibrium assumed, although broken)

Comment: The uncertainties for the measurements done at MPI-K were artificially enlarged to take into account systematic errors due to poorly known efficiencies. Future studies will improve that.

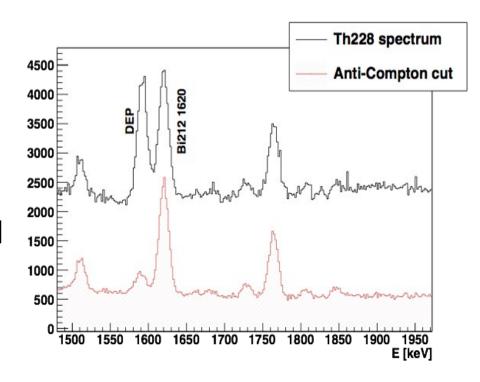
ICP-MS measurements:

Measured	Neck (ETI	. Southampton)	Bulb (ETL	. Southampton)	Datasheet (ETL Southampton)	
element	A [Bq/kg]	Conc. [ppb]	A [Bq/kg]	Conc. [ppb]	A [Bq/kg]	Conc. [ppb]
U		21		24		30
Th		26		29		30
K		140000		120000		60000

Atomic absorption spectroscopy:

Measured	Neck (MP	I-K Heidelberg)	Bulb (MPI-K Heidelberg)		
element	A [Bq/kg]	Conc. [ppm]	A [Bq/kg]	Conc. [ppm]	
K		82		58	

^{***} mail Th concentration (secular equilibrium assumed)
**** mail K concentration (secular equilibrium assumed)


1) Maybe some 222Rn escaped?

Anti-Compton Veto

Hamamatsu MPPC S10362-11-025C/050C/100C

- To increase the surface the light yield SiPMs are attached to wavelength shifting fibers (WLS)
- Two step wavelength shifting:
 - 128 to 430 nm TPB coated VM2000
 - 430 to 500 nm BCF-91A WLS fiber
- Fluor efficiency < 50%</p>
- 12 SiPM with 6 2.5 m WLS fiber
- More than 100 p.e./MeV seen
- The Compton background suppressed by a factor > 4 in the ROI of GERDA

Dewar
SiPM
VM2000
WLS fiber
HPGe detector

Janicskó-Csáthy József, Hossein Aghaei, MPP

performance of photosensors

photomultiplier in water Cere photomultiplier in liquid Argon Scint Silicon-PMT in liquid Argon Scint

Cerenkov
Scintillation
Scintillation

RT LAr LAr

general wishes:

high QE (angular independent)
low radioactivity of glass
pressure up to ~ 2 bar
good afterpulse performance (pre- & late pulses)

[[timing not important, as long no tracking foreseen]]

for PM in IAr:

QE & radioactivity!! Quartz needed?

Present problems: high dark rate (3 kHz)

el. Field of cold glass: days needed to rise HV

for SiPM in IAr:

dark rate, sensitive wave lengths, coupling to WLS

timeline

- Presently starting Phase I (18 kg running for 1 year)
- Phase II with total of 40 kg detectors enriched in ⁷⁶Ge (~ 3y)
- Parallel R&D on

background reduction

PMT for Liquid Argon veto

SiPM for Liquid Argon veto

MC for Phase III design (1t, jointly with Majorana)

guess: less than 1000 PMT for Phase III

?? use of hybrids ??

?? use of SiPM at mK range for active polarized targets ??