sense and simplicity

Digital Silicon Photomultiplier

Philips Digital Photon Counting

Philips Organization

Analog vs. Digital Photon Counting Detector

Analog Silicon Photomultiplier Detector

Digital Silicon Photomultiplier Detector

Analog vs. Digital Silicon Photomultiplier

detector performance

Digital SiPM Parameters

Control over individual SPADs enables detailed analysis (and optimization) of:

- Dark count rate of each diode
- Skew and jitter of the trigger network
- Time jitter of the SPAD and the TDC
- Breakdown voltage variation
- Afterpulsing, optical crosstalk, ...

SPAD Dark Count Rate Distribution

Picosecond-Laser:

Digital SiPM: Afterpulsing

Time differences of two consecutive dark counts in a single diode.

Afterpulsing: deviation from the Poisson distribution in the first few µs.

Many diodes show afterpulsing probabilities of less than 0.1%, few are in the 2-3% range.

Current Status

- 2x2 pixel SiPM sensor fully operational
- 8x8 pixel SiPM arrays tested and working
- · Lot of work done on process optimization and yield learning
- Industrialization phase ongoing
- Re-design planned for early next year (fill factor, trigger network)

Crystal Measurements

8x8 array of LYSO crystals coupled to one tile, illuminated by a ²²Na source

Čerenkov Light Detection

First tests at CERN SPS in August 2010 in collaboration with Prof. Düren (Univ. Gießen)

CRT σ = 85.9ps \rightarrow Sensor σ = 60.7ps

Sensor optimization could lead to $\sigma = 30-40$ ps.

Next beam time: December 2010 at DESY

ASPERA Technology Forum, Munich, October 21-22, 2010

Time Resolution vs. Detected Photons

Time resolution improves with the number of photons

- Sampling of the trigger network skew
- Trigger network now the main limiting factor for single photon timing
- The skew will be minimized in the next submission

Expected single photon time resolution after optimization: $\sigma = 30-40$ ps

