CHERENKOV TELESCOPE ARRAY

Astronomy with photons of Tera-electronvolts

(Our photons are million-million times higher than optical photons – comparable LHC energy)

Masahiro Teshima Max-Planck-Institute for Physics

CAL VHE Instruments

MAGIC TIBET MAGIC TIBET ARGO-YBJ **MILAGRO VERTAS VERITAS** TACTIC **CANGAROO III CANGAROO HESS**

Physics objectives

SNRs

Pulsars and PWNe

Micro quasars X-ray binaries

AGNs

GRBs

Origin of cosmic rays

Dark matter

Space-time & relativity

Cosmology

Galactic sources

Super Nova Remnants RX J1713 HESS + Fermi

Concaved spectrum (non-linear effect)??

cra VHE Skymap at present

Cosmic Ray accelerator Active Galactic Nuclei

M87 flare in 2008: MAGIC, VERITAS, HESS, VLBA

Model of 43GHz Radio flux using the measured VHE gamma flux

M87 flare in 2008: MAGIC, VERITA, HESS, and VLBA

Specification and Physics

SNRs

New sources

Origin of CR

TeV - All sky map Galactic diffuse

Sensitivity x10 (10⁻¹ ¹⁴erg cm⁻²s⁻¹)

> Angular Res. x3 (2 arcmin @1TeV)

> Large Accept. x30 $(3x \ 10^6 \text{m}^2 > 1\text{TeV})$

> > Better S/N x3 >99.9%

All Sky Observatory Energy Res. x2 (10% @ 1TeV)

Low Threshold E x2 (20GeV)

> Fast rotation 20 sec/180°

High Time Res. x10 (~1sec)

Flexible modes Scan / Monitor

Distant AGNs

DM

cosmology

GRBs

Space and Time

Number of Sources (expectation from log S - log N)

Gamma ray emission process from DM Annihilation

Dark Matter Annihilations

CTAS Summary Physics of CTA

- VHE gamma ray astronomy is now blooming!!
 - H.E.S.S., MAGIC and VERITAS are producing a lot of physics results. → 2-3hrs long review
 - Still we have many open questions about High Energy Universe.
 - We need the next generation instrument → CTA
- CTA will achieve excellent sensitivity, higher resolutions and cover wider energy range
 - More than 1000 sources will be discovered
 - All high energy sources in our galaxies can be observed (~400)
 - Origin of galactic cosmic rays
 - Observation will reach to the very deep universe (Early Universe when it was several times smaller)
 - → Evolution of Active galactic nuclei and Super massive Black Holes.
 - → History of Universe: Structure formation, Star formation
 - We can answer many questions not only in Astronomy but also in the fundamental physics and cosmology
 - Search for DM
 - Test the special relativity using long flying high energy photons

Possible New Classes of Sources

Galactic Diffuse All skymap

GRBs

UHECR Sources

Starburst galaxies
Galaxy mergers

Clusters of galaxies

Dark Matter Annihilation

More SNRs: Evolution of SNR

We can study SNRs in different evolutionary stages

	Cas A	RX J1713.7 -3946	IC443	W44	W51C
Age (kyears)	0.3	2	10	20	30
N _{average} (cm-3)	10	0.1	10	100	10
CRfraction	2%	50%	25%	5%	10%

Courtesy of S.Funk

PKS 2155-304 Spectral Energy Distribution

Time-averaged SED is well described by a single zone SSC model:

Highest energy electrons ($\gamma_e > 2 \times 10^5$) produce the X-ray emission, but contribute relatively little above 0.2 TeV

Mrk421 MWL SED

Physics objectives

SNRs

Pulsars and PWNe

Micro quasars X-ray binaries

AGNs

GRBs

Origin of cosmic rays

Dark matter

Space-time & relativity

Cosmology

Telescopes

Imaging Air Cherenkov Telescope Cherenkov Light Images

Cherenkov Light Images on cameras 50photons/m² ~1000 p.e./Tel at 1TeV

CTA-Typical parameters

Energy range 20GeV ~ 100TeV

CR rejection power ~99.9% (Multiplicity 6 Tels)

Angular resolution ~0.03 degrees at 1TeV

Energy resolution ~10% at 1TeV

Detection area $> 3 \times 10^6 \text{m}^2$

Sensitivity 1m Crab Flux (10⁻¹⁴ erg/cm²s) at 1TeV

CTAL Aiming sensitivity

