

Observing the sky

ESIPAP 2021

Observing the « CMB » sky

CMB experiments

	Radio	mm		
Telescopes	dish and horns	dish and horns		
Detectors	HEMT + square law detectors	bolometer and/or KIDs		
Cooling	18-50 K	100-300 mK		
Observing mode	Ground, satellite	ground, balloon, satellite		

CMB intensity and polarisation power spectra : the quest for B-modes

CMB intensity and polarisation power spectra : the quest for B-modes

Current results are limited by foreground contamination, r<0.07 @ 95 % C.L. [BICEP, KECK & Planck]

« Some » current (planned) CMB experiments

Project	Country	Location	Status	Frequencies	ℓ range		$\sigma(r)$ goal	
		0	e.	(GHz)	value	Ref.	no fg.	with fg.
QUBIC	France	Argentina		150,220	30-200		0.006	0.01
Bicep3/Keck	U.S.A.	Antartica	Running	95, 150, 220 ¹	50-250	[22]	2.5 10 ⁻³	0.013
CLASS	U.S.A.	Atacama	≥ 2016	38, 93, 148, 217	2-100	[29]	1.4 10 ⁻³	0.003
SPT3G	U.S.A.	Antartica	2017	95, 148, 223	50-3000	[23]	1.7 10 ⁻³	0.005
AdvACT	U.S.A.	Atacama	Starting	90, 150, 230	60-3000	[24]	1.3 10 ⁻³	0.004
Simons Array	U.S.A.	Atacama	≥ 2017	90, 150, 220	30-3000	[25]	1.6 10 ⁻³	0.005
LSPE	Italy	Artic	2017	43, 90, 140, 220, 245	3-150	[30]	0.03*	
EBEX10K	U.S.A.	Antartica	≥ 2017	150, 220, 280, 350	20-2000	[28]	2.7 10 ⁻³	0.007
SPIDER	U.S.A.	Antartica	Running	90, 150	20-500	[26]	3.1 10 ⁻³	0.012
PIPER	U.S.A.	Multiple	≥ 2016	200, 270, 350, 600	2-300	[27]	3.8 10 ⁻³	0.008

+ proposed satellites : LITEBIRD (2028), PRISTINE (?), CORE (2035?) + ground S4 (2030 ?)

LITEBIRD satellite

LITEBIRD design and expected performance

- Multi-band instrument, 15 frequency bands from 40 to 400 GHz
- Two independent telescopes : LFT (40-135 GHz ; 12 bands) and HFT (250-400 GHz, 3 bands)
- Resolution 20' to 70'
- Cold continuosly rotating Half-wave-plate
- 2622 TES cooled down @ 0.1
- 2 years of operation
- Launch expected for 2026-2027
- Japanese + USA collaboration, European (French) contributions (phase A)

10⁻³ sensitivity in r in 2 years of operation, good foreground removal, problems with delensing

Sunyaev-Zeldovich effect

NIKA2: a millimeter camera

for cluster cosmology

Dual band mm KID camera operating and 150 and 260 GHz

IRAM 30-m telescope at Pico Veleta (Spain)

Specific optical system to obtain the largest FOV

Dilution cryostat: 180 mK nominal

Arrays of 1140 (616) KIDs: 8 (4) independent feedlines with up to 200 KID each

20 boxes (one per feedline) arranged in 3 crates (one per array) ESIPAP 2021 300 multiplexing factor

- September 2015 : installation at IRAM
- October 2015 : First lights
- September 2016 : complete instrumental setup
- April 2017 : commissioning succesfully finished ; performance better than expected
- Open to for public observations for at least one decade from now

Frequency	150 GHz	260 GHz
# KIDs	616 (553)	2 x 1140 (960)
FOV diameter	6.5 arcmin	6.5 arcmin
Sensitivity	9 mJy/s ^{1/2}	33 mJy/s ^{1/2}
Angular res.	17.7 arcsec	11.2 arcsec

[NIKA collaboration, A&A, 2017,arXv:]

NIKA2 is well adapted for SZ observations of intermediate and high redshift

- Two frequency bands, negative & zero tSZ signal
- Large FOV : size of PLANCK beam
- High resolution : 17 times better than Planck

One of the 5 NIKA2 LP (1300h in total)

- 300 hours of tSZ observation
- 50 high redshift clusters 0.5 < z < 1.0</p>
- tSZ selected clusters from Planck and ACT catalogues

Ancillary data

- X-ray follow-up with XMM
- > Optical data using GranTeCan
- MUSIC hydrodynamic simulations

Main goals

- In-depth study of ICM
- Thermodynamic properties: pressure, density, temperature and entropy profiles
- Mass tSZ flux relationship

Redshift evolution of:

- Thermodynamic quantities profiles
- Scaling laws and hydrostatic bias

Variation of cluster properties with:

- > Dynamical state (mergers)
- Morphology (ellipticity)

Part II : LSS OBSERVATIONS

LSS observables

• Galaxy clustering

• Lensing : weak & strong

• Supernovae type I

• Clusters of galaxies

DES (Dark Energy Survey)

Six years of observations from 2013-2019 (758 nights)

Survey of 5000 square degrees in five filters with a 570 Megapixels camera

300 million of galaxies observed

DECam : DES 570 Megapixels camera mounted at the V.Blanco 4 m telescope at Cerro Tololo (Chile)

Selected DES main results

Constraints from galaxy clustering and weak lensing

Supernova Hubble diagram

Cerro Pachón – Future site of the LSST

LSST Rendering on El Peñón

Cerro Pachón ridge – view from northwest

Large Synoptic Survey Telescope

First lights 2021 Survey from 2023 to 2033

LSST must scan $\sim 1/2$ of the visible sky every 3/4 nights during 10 years in 6 frequency bands with high sensitivity

> Large = big Synoptic = view all Survey = systematic survey

8.4 m diameter telescope to be able to detect faint objects

Large FOV camera with 6 filters from nearby IR to nearby UV, 3 millards of pixels

LSST scientific program

→Solar system objects →Stellar populations \rightarrow Our galaxy and the local environment →Variable sky objects \rightarrow galaxies Actifs galaxies →supernovae →Strong lensing →Weak lensing →Galaxy clustering \rightarrow Clusters of galaxies cosmologie

IN2P3 labs are fully involved in cosmological studies

www.lsst.org/lsst/scibook

Mesure the position/redshift of milliards of galaxies

To use galaxies for cosmology we need to measure their redshift

Accurate photometry in 6 bands = very low resolution spectroscopy

Need to estimate redshift for 3-4 milliards for galaxies up to z=2-3

Although photometric redshift uncertainties smear out the distribution, the large statistic allows us to use galaxies for cosmology

Precision/accurate cosmology Multi-Probe analysis

EUCLID

The EUCLID instrument

- M class ESA space mission
- All-sky visible and IR observations in photometry and spectroscopy
- Exposure depth 24 magnitudes
- 2 surveys : shallow (15000 deg²), deep (2 x 20 deg²)
- Consists of 2 channels, and 3 instruments :
 - VIS, optical imager for lensing reconstruction (550-900 nm)
 - NISP, IR photometer (900 2000 nm) and spectrometer (1100- 2000 nm)
- Launch 2020-2021
- 7 years operation
- International collaboration, IN2P3 fully involved

EUCLID cosmological probes

Weak lensing (WL)

- distribution of matter, expansion history, growth rate, tomography
- 3-D cosmic shear measurements 0 < z< 2
- shape and photo-z from optical and NIR data
- 1.5 billion galaxies
- Galaxy clustering (GC)
- distribution of matter, expansion history, growth rate, tomography
- 3-D position measurements 0.7 < z< 2
- 3D distribution of galaxies from spectroscopy redshift
- measure position of 50 millions galaxies
 Clusters of galaxies
- measure cluster number counts as a function mass and redshift, power spectrum statistics,
- detection of about 60000 clusters

EUCLID expected performance

Parameter		Dark en	iergy	neutrinos	Initial conditions	Modified gravity	
	w _p	wa	FOM	mv (eV)	F _{NL}	γ	
Euclid alone	0,013	0,048	1540	0,027	5,5	0,009	
Euclid +Planck	0.007	0.035	4020	0.019	2.0	0.007	
Current	0.1	1.5	~10	0.58	100	0.2	
Improve factor	>10	>50	>400	30	50	30	