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Neural networks

Human brain

1011 neurons

1014 synapses

Learning:
modifying synapses
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Brief history of artificial neural networks

1943: W. McCulloch and W. Pitts explore capabilities of networks of
simple neurons

1958: F. Rosenblatt introduces perceptron (single neuron with
adjustable weights and threshold activation function)

1969: M. Minsky and S. Papert prove limitations of perceptron
(linear separation only) and (wrongly) conjecture that multi-layered
perceptrons have same limitations
⇒ ANN research almost abandoned in 1970s!!!

1986: Rumelhart, Hinton and Williams introduce “backward
propagation of errors”: solves (partially) multi-layered learning

Next: focus on multilayer perceptron (MLP)
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Single neuron

Remember linear separation (Fisher discriminant):
λ(x) = w · x =

∑n
i=1 wixi + w0

Boundary at λ(x) = 0

Replace threshold boundary by sigmoid (or tanh):
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σ: activation function (neuron activity)

Neuron behaviour completely controlled by weights w = {w0, . . . ,wn}
Training: minimisation of error/loss function (quadratic deviations,
entropy [maximum likelihood]), via gradient descent or stochastic
approximation
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Neural networks

Universal approximation theorem

Let σ(.) be a non-constant, bounded, and monotone-increasing continuous
function. Let C(In) denote the space of continuous functions on the
n-dimensional hypercube. Then, for any given function f ∈ C(In) and
ε > 0 there exists an integer M and sets of real constants wj ,wij where
i = 1, . . . , n and j = 1, . . . ,M such that

y(x ,w) =
M∑
j=1

wjσ

(
n∑

i=1

wijxi + w0j

)

is an approximation of f (.), that is |y(x)− f (x)| < ε.
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Neural networks

Interpretation

You can approximate any continuous function to arbitrary precision
with a linear combination of sigmoids

Corollary 1: can approximate any continuous function with neurons!

Corollary 2: a single hidden layer is enough

Corollary 3: a linear output neuron is enough

Multilayer perceptron: feedforward network

Neurons organised in layers

Output of one layer becomes input
to next layer

yk(x ,w) =
M∑
j=0

w
(2)
kj σ

(
n∑

i=0

w
(1)
ji xi

)
︸ ︷︷ ︸

zj
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A neural network can fit any function: examples

1 input (training data), 1 output

3 hidden neurons on one hidden layer

©Jan Therhaag

Any continuous function can be 

determined by number of hidden 

units (neurons) and characteristic 

z!
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Neural network training

Training means minimising error function E (w)

∂E
∂wj

=
∑N

n=1−(t(n) − y (n))x
(n)
j with target t(n) (0 or 1), so t(n) − y (n)

is the error on event n

All events at once (batch learning):

weights updated all at once after processing the entire training sample
finds the actual steepest descent
takes more time
usually: mini-batches (send events by batches)
new training events: need to restart training from scratch

or one-by-one (online learning):

incremental learning: new training events included as they come
speeds up learning
may avoid local minima with stochastic component in minimisation
careful: depends on the order of training events

One epoch: going through the entire training data once
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Neural network training

Minimise error function E (w)

Gradient descent: w (k+1) = w (k) − η∇wE
(k)

with learning rate η

©G. Louppe

local minimum
too large learning rate
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Neural network training: SGD

Solution: stochastic gradient descent (SGD)

batch gradient descent stochastic gradient descent

©G. Louppe
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Backpropagation

Training means minimising error
function E (w)

For single neuron: dE
dwk

= (y − t)xk

One can show that for a network:

dE

dwji
= δjzi , where

δk = (yk − tk) for output neurons

δj ∝
∑
k

wkjδk otherwise

Hence errors are propagated backwards
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Neural network overtraining
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Diverging weights can cause overfitting

Mitigate by:

early stopping (after a fixed number of epochs)
monitoring error on test sample
regularisation, introducing a “weight decay” term to penalise large
weights, preventing overfitting:

Ẽ (w) = E (w) +
α

2

∑
i

w2
i
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Regularisation

10 hidden nodes 10 hidden nodes and α = 0.04

©Jan Therhaag

Much less overfitting, better generalisation properties
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Neural networks: Tricks of the trade Efficient BackProp

Preprocess data:

if relevant, provide e.g. x/y instead of x and y
subtract the mean because the sigmoid derivative becomes negligible
very fast (so, input mean close to 0)
normalise variances (close to 1)
shuffle training sample (order matters in online training)

Initial random weights should be small to avoid saturation

Batch/online training: depends on the problem

Regularise weights to minimise overtraining.

Make sure the training sample covers the full parameter space

No rule (not even guestimates) about the number of hidden nodes
(unless using constructive algorithm, adding resources as needed)

A single hidden layer is enough for all purposes, but multiple hidden
layers may allow for a solution with fewer parameters
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Adding a hidden layer

2-20-1 network
(81 parameters)

2-50-1 network
(201 parameters)

2-10-2-1 network
(55 parameters)
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Deep learning

What is learning?

Ability to learn underlying and previously unknown structure from
examples
⇒ capture variations

Deep learning: have several hidden layers (> 2) in a neural network

Motivation for deep learning

Inspired by the brain!

Humans organise ideas hierarchically, through composition of simpler
ideas

Heavily unsupervised training, learning simpler tasks first, then
combining into more abstract ones

Learn first order features from raw inputs, then patterns in first order
features, then etc.
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Deep architecture in the brain
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Deep learning in artificial intelligence

Mimicking the brain

About 1% of neurons active simultaneously in the brain:
distributed representation

activation of small subset of features, not mutually exclusive
more efficient than local representation
distributed representations necessary to achieve non-local
generalization, exponentially more efficient than 1-of-N enumeration
example: integers in 1..N

local representation: vector of N bits with single 1 and N-1 zeros
distributed representation: vector of log2 N bits (binary notation),
exponentially more compact

Meaning: information not localised in particular neuron but
distributed across them

Deep architecture

Insufficient depth can hurt

Learn basic features first, then higher level ones

Learn good intermediate representations, shared across tasks
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Deep learning revolution

Deep networks were unattractive

One layer theoretically enough for everything

Used to perform worse than shallow networks with 1 or 2 hidden layers

Apparently difficult/impossible to train (using random initial weights
and supervised learning with backpropagation)
Backpropagation issues:

requires labelled data (usually scarce and expensive)
does not scale well, getting stuck in local minima
“vanishing gradient”: gradients getting very small further away from
output ⇒ early layers do not learn much, can even penalise overall
performance

Breakthroughs around 2006 (Bengio, Hinton, LeCun)

Train each layer independently

Can use unlabelled data (a lot of it)

New activation functions

Possible thanks to algorithmic innovations, computing resources, data!
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Greedy layer-wise pre-training

Algorithm

Take input information

Train feature extractor

Use output as input to training another feature extractor

Keep adding layers, train each layer separately

Finalise with a supervised classifier, taking last feature extractor
output as input

All steps above: pre-training
Fine-tune the whole thing with supervised training (backpropagation)

initial weights are those from pre-training

Feature extractors

Restricted Boltzmann machine (RBM), auto-encoder, sparse
auto-encoder, denoising auto-encoder, etc.

Note: important to not use linear activation functions in hidden
layers. Combination of linear functions still linear, so equivalent to
single hidden layer
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Why does unsupervised training work?

Optimisation hypothesis

Training one layer at a time
scales well

Backpropagation from sensible
features

Better local minimum than
random initialisation, local
search around it

Overfitting/regularisation
hypothesis

More info in inputs than labels

No need for final discriminant
to discover features

Fine-tuning only at category
boundaries

Example
Stacked denoising auto-encoders

10 million handwritten digits

First 2.5 million used for
unsupervised pre-training
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3–layer net, budget of 10000000 iterations

0 unsupervised + 10000000 supervised

2500000 unsupervised + 7500000 supervised

Worse with supervision: eliminates
projections of data not useful for
local cost but helpful for deep
model cost
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An example from Google research team 2011 paper

A “giant” neural network

At Google they trained a 9-layered NN with 1 billion connections

trained on 10 million 200×200 pixel images from YouTube videos
on 1000 machines (16000 cores) for 3 days, unsupervised learning

Sounds big? The human brain has 100 billion (1011) neurons and 100
trillion (1014) connections...

What it did

It learned to recognise faces, one of the original goals

. . . but also cat faces (among the most popular things in YouTube
videos) and body shapes
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Google’s research on building high-level features

Features extracted from
such images

Results shown to be
robust to

colour
translation
scaling
out-of-plane rotation
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Rectified linear unit ReLU

One of reasons for vanishing gradient: sigmoid
activation

tiny non-varying derivative away from zero

Solution: non-saturating function

Simplest case: rectified linear unit ReLU
Other variants: leaky ReLU, shifted ReLU (SReLU), exponential linear
unit (ELU), etc.
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Other variants: leaky ReLU, shifted ReLU (SReLU), exponential linear
unit (ELU), etc.
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Neural network zoo

https://www.asimovinstitute.org/

Many possible network structures

Moving away from feature engineering to model design
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Convolutional networks

Images are stationary: can learn feature
in one part and apply it in another

Use e.g. small patch sampled randomly,
learn feature, convolve with full image

Build several “feature maps”

Stack them with pooling layers
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Learning feature hierarchy
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Recurrent neural networks

Many problems require processing a sequence
sequence classification

text analysis (“sentiment analysis”)
DNA sequencing
action selection

sequence synthesis

text synthesis
music/video

sequence translation

speech recognition
translation

Usually variable length sequences (number of words/ notes/ frames/
etc.)

Use a recurrent model, maintaining a recurrent state updated after
each step
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Recurrent neural networks

Keeps information from earlier frames while processing (variable-size)
sequence

Could also be bi-directional, consuming sequence in both directions

Issue: early frames diluted over sequence ⇒ memory loss

Introducing long short-term memory (LSTM) networks

using forget gate to regulate information flow
also possible with gated recurrent units (GRU)
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Long short-term memory (LSTM)

Add internal state separate 

−

−

$%&'()*+7(..&8+9:/;;&

Recurrent state split in two parts

cell state ct
output state ht

Forget gate ft to erase cell state info

Input gate it to update cell state info

Output gate ot to select output state
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Recurrent neural networks examples

Labelling images arXiv:1502.03044

b-jet tagging in ATLAS experiment ATL-PHYS-PUB-2017-003
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Auto-encoders

Approximate the identity function

Build a network whose output is
similar to its input

Sounds trivial? Except if imposing
constraints on network (e.g., # of
neurons, locally connected network)
to discover interesting structures

Can be viewed as lossy compression
of input

Finding similar books

Get count of 2000 most common
words per book

“Compress” to 10 numbers
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Auto-encoders

With principle component analysis
(PCA)

With autoencoder
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Other auto-encoders

Sparse auto-encoder

Sparsity: try to have low activation of neurons (like in the brain)

Compute average activation of each hidden unit over training set

Add constraint to cost function to make average lower than some
value close to 0

Denoising auto-encoder

Stochastically corrupt inputs

Train to reconstruct
uncorrupted input

Locally connected auto-encoder

Allow hidden units to connect only to small subset of input units

Useful with increasing number of input features (e.g., bigger image)

Inspired by biology: visual system has localised receptive fields

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 136/183



Domain adaptation and adversarial training

Typical training arXiv:1409.7495

signal and background from simulation arXiv:1505.07818

results compared to real data to make measurement

Requires good data–simulation agreement

Possibility to use adversarial training and domain adaptation to
account for discrepancies/systematic uncertainties
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ILSVRC 2014 Summary paper

ImageNet Large Scale Visual Recognition Challenge

ImageNet: database with 14 million images and 20k categories

Used 1000 categories and about 1.3 million manually annotated
images

PASCAL ILSVRC

· · ·

· · ·

· · ·
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ILSVRC 2014 images

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 139/183



ILSVRC 2014 images

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 140/183



ILSVRC 2014 tasks
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ILSVRC 2014 And the winner was. . .

Google of course! (first time)
GoogLeNet:
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ILSVRC 2014 And the winner was. . .

Google of course! (first time)

GoogLeNet:

256 480 480
512

512 512
832 832 1024

9 Inception modules
Convolution
Pooling
Softmax
OtherNetwork in a network in a network...
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ILSVRC 2014 Even GoogLeNet is not perfect!
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ILSVRC 2010–2016

2010–14: 4.2x reduction 1.7x reduction 1.9x increase

ILSVRC 2015 (same dataset as 2014) arXiv:1512.03385

Winner: MSRA (Microsoft Research in Beijing)

Deep residual networks with > 150 layers

Classification error: 6.7% → 3.6% (1.9x)

Localisation error: 26.7% → 9.0% (2.8x)

Object detection: 43.9% → 62.1% (1.4x)

identity

weight layer

weight layer

relu

relu
F(x) + x

x

F(x)
x

ILSVRC 2016 http://image-net.org/challenges/LSVRC/2016

Mostly ResNets. Classification: 0.030; localisation: 0.08; detection: 0.66
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MSRA @ ILSVRC2015

Revolution of Depth

3.57

6.7 7.3

11.7

16.4

25.8

28.2

ILSVRC'15

ResNet

ILSVRC'14

GoogleNet

ILSVRC'14

VGG

ILSVRC'13 ILSVRC'12

AlexNet

ILSVRC'11 ILSVRC'10

ImageNet Classification top-5 error (%)

shallow8 layers

19 layers22 layers

152 layers

8 layers
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Going further
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More and more refinement (segmentation)
More objects, in real time on video1/video2/video3
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Google DeepMind: arcade games Nature 518, 529 (2015)

Learning to play 49 different Atari 2600 games

No knowledge of the goals/rules, just 84x84 pixel frames

60 frames per second, 50 million frames (38 days of game experience)

Deep convolutional network with reinforcement: DQN (deep
Q-network)

action-value function Q
�
s,að Þ~max

p

rtzcrtz1zc
2
rtz2z . . . jst~s, at~a, p

� �

,

maximum sum of rewards rt discounted by γ at each timestep t,
achievable by a behaviour policy π = P(a|s), after making observation
s and taking action a

Tricks for scalability and performance:

experience replay (use past frames)
separate network to generate learning targets (iterative update of Q)

Outperforms all previous algorithms, and professional human player
on most games
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Google DeepMind: training&performance

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights h

Initialize target action-value function Q̂ with weights h25 h

For episode5 1,M do

Initialize sequence s1~ x1f g and preprocessed sequence w1~w s1ð Þ
For t5 1,T do

With probability e select a random action at
otherwise select at~argmaxaQ w stð Þ,a; hð Þ
Execute action at in emulator and observe reward rt and image xt1 1

Set stz1~st ,at ,xtz1 and preprocess wtz1~w stz1ð Þ
Store transition wt ,at ,rt ,wtz1

ÿ �

in D

Sample random minibatch of transitions wj,aj,rj,wjz1

� �

from D

Set yj~
rj if episode terminates at step jz1

rjzc maxa0 Q̂ wjz1,a
0; h

{

� �

otherwise

(

Perform a gradient descent step on yj{Q wj,aj; h
� �� �2

with respect to the
network parameters h

Every C steps reset Q̂~Q

End For

End For

What about Breakout or Space invaders?
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Google DeepMind: mastering Go Nature 529, 484 (2016)

Game of Go considered very challenging for AI

Board games: can be solved with search tree of bd possible sequences
of moves (b = breadth [number of legal moves], d = depth [length of
game])

Chess: b ≈ 35, d ≈ 80 → go: b ≈ 250, d ≈ 150

Reduction:

of depth by position evaluation (replace subtree by approximation that
predicts outcome)
of breadth by sampling actions from probability distribution (policy
p(a|s)) over possible moves a in position s

19× 19 image, represented by CNN

Supervised learning policy network from expert human moves,
reinforcement learning policy network on self-play (adjusts policy
towards winning the game), value network that predicts winner of
games in self-play.
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Google DeepMind: AlphaGo Nature 529, 484 (2016)

AlphaGo: 40 search threads, simulations on 48 CPUs, policy and value
networks on 8 GPUs. Distributed AlphaGo: 1020 CPUs, 176 GPUs

AlphaGo won 494/495 games against other programs (and still 77% against
Crazy Stone with four handicap stones)

Fan Hui: 2013/14/15 European champion

Distributed AlphaGo won 5–0

AlphaGo evaluated thousands of times fewer
positions than Deep Blue (first chess computer
to bit human world champion) ⇒ better
position selection (policy network) and better
evaluation (value network)
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Then played Lee Sedol (top Go play in the world over last decade) in March
2016 ⇒ won 4–1. AlphaGo given honorary professional ninth dan,
considered to have “reach a level ‘close to the territory of divinity’ ”

Ke Jie (Chinese world #1): “Bring it on!”. May 2017: 3–0 win for AlphaGo.
New comment: “I feel like his game is more and more like the ‘Go god’.
Really, it is brilliant”
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DeepMind AlphaGo Zero Nature 550, 354 (2017)

Learn from scratch, just from the rules and random moves

Reinforcement learning from self-play, no human data/guidance

Combined policy and value networks

4.9 million self-play games

Beats AlphaGo Lee (several months of training) after just 36 hours

Single machine with four TPU
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DeepMind AlphaZero arXiv:1712.01815 [cs.AI]

Same philosophy as AlphaGo Zero, applied to chess, shogi and go

Changes:

not just win/loss, but also draw or other outcomes
no additional training data from game symmetries
using always the latest network to generate self-play games rather than
best one
tree search: 80k/70M for chess AlphaZero/Stockfish, 40k/35M for
shogi AlphaZero/Elmo
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DeepMind AlphaFold Blog Dec 2018 AlphaFold2 Nov 2020

Trying to tackle scientific problem

Goal: predict 3D structure of protein based solely
on genetic sequence

Using DNN to predict
distances between pairs of amino acids
angles between chemical bonds

Search DB to find matching existing substructures

Also train a generative NN to invent new fragments

Achieved best prediction ever
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https://deepmind.com/blog/alphafold
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology


DeepMind AlphaStar Blog Jan 2019 Nature 575, 350–354 (2019)

Mastering real-time strategy game StarCraft II

Challenges in game theory (no single best strategy), imperfect information (hidden
parts of game), long term planning, real time (continuous flow of actions), large
action space (many units/buildings)

Using DNN trained

directly on raw data games
supervised learning on human games
reinforcement learning (continuous league)

DNN output: list of actions

Trained for 14 days; each agent: up to 200 years of real-time play

Runs on single desktop GPU

Defeated 5–0 one of best pro-players
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https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://doi.org/10.1038/s41586-019-1724-z


Deep networks: new results all the time
Playing poker

Libratus (AI developed by Carnegie Mellon University) defeated four of
the world’s best professional poker players (Jan 2017)
After 120,000 hands of Heads-up, No-Limit Texas Hold’em, led the
pros by a collective $1,766,250 in chips
Learned to bluff, and win with incomplete information and opponents’
misinformation

Lip reading arXiv:1611.05358 [cs.CV]

human professional: deciphers less than 25% of spoken words
CNN+LSTM trained on television news programs: 50%

Limitation: adversarial attacks arXiv:1312.6199 [cs.CV]

left: correctly classified image

middle: difference between left image and
adversarial image (x10)

right: adversarial image, classified as ostrich
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Adversarial attack: what is happening?
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Adversarial attacks Cisse et al arXiv:1707.05373
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One-pixel attack Su et al arXiv:1710.08864
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Hype cycle
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Hype cycle

No deep learning/ML
anymore (since 2019)

Instead, all sorts of “AI”
and ML-driven systems

explainable AI
embedded AI
generative AI /
generative adversarial
networks
adaptive ML
self-supervised
learning
AI-assisted design
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Machine learning and particle physics

http://opendata.cern.ch
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Machine learning and particle physics

http://opendata.cern.ch

https://sites.google.com/site/trackmlparticle

TrackML Challenge: Grand Finale 1-2 July 2019
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Machine learning and particle physics

Center for Data Science

Paris-Saclay

the HiggsML challenge
May to September 2014

When High Energy Physics meets Machine Learning

Joerg Stelzer - Atlas-CERN
Marc Schoenauer - INRIA

Balázs Kégl - Appstat-LAL
Cécile Germain - TAO-LRI

David Rousseau - Atlas-LAL
Glen Cowan - Atlas-RHUL

Isabelle Guyon - Chalearn
Claire Adam-Bourdarios - Atlas-LAL

Thorsten Wengler - Atlas-CERN  
Andreas Hoecker - Atlas-CERN 

Organization committee Advisory committee

info to participate and compete : https://www.kaggle.com/c/higgs-boson
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HiggsML challenge

Put ATLAS Monte Carlo samples on the web
(H → ττ analysis)

Compete for best signal–bkg separation

1785 teams (most popular challenge ever)

35772 uploaded solutions

See Kaggle web site and more information
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Final leaderboard 

David Rousseau, Higgs ML, Weekly,   2nd December 2014 
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HEP meets ML award 
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improvements 
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Machine learning and particle physics

https://inspirehep.net/literature?q=machine learning or deep learning or multivariate

Up-to-date comprehensive review of papers

https://github.com/iml-wg/HEPML-LivingReview
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Machine learning and particle physics

Reduce data dimensionality to allow analysis

Going to lower level features arXiv:1402.4735
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Machine learning and particle physics

Transforming inputs into images arXiv:1511.05190
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Machine learning and particle physics

Looking for new physics scenario
with unknown mass
⇒ one NN for each mass point

Parameterised NN EPJC (2016) 76:235

arXiv:1601.07913

mass as training parameter
as good as dedicated training
generalises better
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Machine learning and particle physics

Fast simulation with generative models

Heavy CPU cost of simulation
(> 50% of grid resources)

MC stats becoming limiting
factor in analyses

Replace “full simulation” with
approximation

already routinely done, using
parameterisation of showers or
library of pre-simulated objects
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Machine learning and particle physics

Fast simulation with generative models ATL-SOFT-PUB-2018-001 ATLAS-SIM-2019-004

< 1 ms instead of
10 s per object!

×100 gain on
complete event

Still some work to
be done
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Machine learning and particle physics
Anomaly detection: looking for new physics thesis

Learn background (SM) properties

Flag deviations from prediction without knowing anything about
specific new physics scenario

Penalised anomaly detection

based on Gaussian mixture model

fS and fB : finite sums of Gaussians

semi-supervised training

penalty term in LH to select
variables

Gaussian processes

Learn background with GP instead
of parametric model

Compare data to new GP:
background model+signal

Returns parameters of “peak”
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Deep learning: looking forward

Very active field of research in machine learning and artificial
intelligence

not just at universities (Google, Facebook, Microsoft, NVIDIA, etc. . . )
Training with curriculum:

what humans do over 20 years, or even a lifetime
learn different concepts at different times
solve easier or smoothed version first, and gradually consider less
smoothing
exploit previously learned concepts to ease learning of new abstractions

Influence learning dynamics can have big impact:
order and selection of examples matters
choose which examples to present first, to guide training and possibly
increase learning speed (called shaping in animal training)

Combination of deep learning and reinforcement learning
still in its infancy, but already impressive results

Domain adaptation and adversarial training
e.g. train in parallel network that produces difficult examples
learn discrimination (s vs. b) and difference between training and
application samples (e.g. Monte Carlo simulation and real data)
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NeurIPS 2019 in Vancouver
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NeurIPS2019: generalisation in deep learning

Actually works surprisingly well

Over-parameterised DNN should overfit but don’t: why?

Neural tangent kernel (NTK): helps thinking in infinite-width limit.
But can do better in reality

Robustness to adversarial attacks

Start with large learning rate to learn easy features, then decrease to
learn low noise, hard-to-fit patterns
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NeurIPS2019: Take away trends © Chip Huyen

More people active with
neurosciences: ML to understand
NS, and NS to understand ML

Meta learning (learning to learn)

Reinforcement learning is gaining
ground. Other keywords: bandit,
feedback, regret, control

Attributing uncertainty to ML algorithms (often with Bayesian
methods in deep learning)

Generative models still popular

Hardware keyword on the rise, signaling more hardware-aware
algorithms: hardware = bottleneck?

“Recurrent and convolutional neural networks are literally so last year”

Growing consciousness of potential impact on society
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NeurIPS2019: ML and the Physical Sciences

91 short papers accepted for poster
presentation (6 selected for talks)

70 “digital acceptance” papers (above
rejection threshold but beyond capacity)

228 referees web site (incl. videos)

5 invited speakers:

Alan Aspuru-Guzik: Recent progress in ML
for chemistry: SELFIES, inverse design of
drug candidates and materials, and Bayesian
algorithms for self-driving laboratories
Yasaman Bahri: Towards an understanding
of wide, deep neural networks
Katie Bouman: Cannot find title, about
Event Horizon Telescope imaging technique
Bernhard Schölkopf: Causality and
Exoplanets
Maria Schuld: Innovating machine learning
with near-term quantum computing
Lenka Zdeborova: Understanding machine
learning via exactly solvable statistical
physics models

Suggested areas

Application of machine and
deep learning to physical
sciences

Generative models

Likelihood-free inference

Variational inference

Simulation-based models

Implicit models

Probabilistic models

Model interpretability

Approximate Bayesian
computation

Strategies for incorporating prior
scientific knowledge into
machine learning algorithms

Experimental design

Any other area related to the
subject of the workshop
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NeurIPS2019: AI and society

ML achieves super-human performance for well-designed problems, or
games with score ⇒ where one can define a proper loss function or
reward
Scale to “real” problems?

explainability
causality
“moral” stand
culture, art

Many advances in medical imaging, modelling of various phenomena,
supernova analysis or LHC physics, but issues with:

out-of-distribution generalisation
scalability of computing resources, carbon footprint
reliability
decision bias (gender, race, etc.)

Workshops/socials on Fairness & ethics, AI for Good, Tackling
Climate Change with ML, AI for Humanitarian Assistance and
Disaster Response, Safety and Robustness in Decision-making, . . .

Importance of personal decisions
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NeurIPS2019: Hidden information

Predicting the Politics of an Image Using Webly Supervised Data

Computational Mirrors: Blind Inverse Light Transport by Deep Matrix Factorization (edited video)
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https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=13531
https://neurips.cc/Conferences/2019/ScheduleMultitrack?event=14353


Conclusion

Many techniques and tools exist to achieve optimal discrimination

(Un)fortunately, no one method can be shown to outperform the
others in all cases

One should try several and pick the best one for any given problem

Latest machine learning algorithms (e.g. deep networks) require
enormous hyperparameter space optimisation. . .

Machine learning and multivariate techniques are at work in your
everyday life without your knowning and can easily outsmart you for
many tasks

Try this to convince yourself http://www.phi-t.de/mousegame/mousegame en.html

Upcoming reference book (in about six months)

Artificial Intelligence for High Energy Physics https://doi.org/10.1142/12200
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Deep networks and art
Learning a style arXiv:1508.06576 [cs.CV] Neural-style

Computer dreams Google original

deepdream

Face Style http://facestyle.org

http://dcgi.fel.cvut.cz/home/sykorad/facestyle.html
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CycleGAN arXiv:1703.10593 github

Summary
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CycleGAN arXiv:1703.10593 github

From Monnet to photograph
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CycleGAN arXiv:1703.10593 github

Style transfer
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CycleGAN arXiv:1703.10593 github

Object transfiguration

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 179/183

https://arxiv.org/abs/1703.10593
https://junyanz.github.io/CycleGAN/


CycleGAN arXiv:1703.10593 github

Season transfer

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 179/183

https://arxiv.org/abs/1703.10593
https://junyanz.github.io/CycleGAN/


CycleGAN arXiv:1703.10593 github

Photo enhancement
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CycleGAN arXiv:1703.10593 github

Failure
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