
Detector Simulation
Primary Particles

1

Witek Pokorski
Alberto Ribon

CERN

8-9.02.2021

What do we need to run simulation?

2

• User needs to provide ‘source’ of primary particles to Geant4
• Geant4 simulates the passages of those particles through the detector

p+

p+

PrimaryGenerator Geometry PhysicsList

UserActions SensitiveDetectors

Hits
Digits

Statistics,
Histograms,

etc

User Application

Primary vertex and primary particle

• Primary particle(s) means particle(s) with which you start an event.
– E.g. particles made by the primary p-p collision, an alpha particle emitted from

radioactive material, a gamma-ray from treatment head, etc.
– Then Geant4 tracks these primary particles in your geometry with physics

interactions and generates secondaries, detector responses and/or scores.
• Primary vertex has position and time. Primary particle has a particle ID, momentum and

optionally polarization. One or more primary particles may be associated with a
primary vertex. One event may have one or more primary vertices.

• Generation of primary vertex/particle is one of the user-mandatory tasks.
G4VUserPrimaryGeneratorAction is the abstract base class to control the generation.
– Actual generation should be delegated to G4VPrimaryGenerator class. Several

concrete implementations, e.g. G4ParticleGun, G4GeneralParticleSource, are
provided.

3

G4PrimaryVertex objects
= {position, time}

G4PrimaryParticle objects
= {PDG, momentum,

polarization…}

G4VUserPrimaryGeneratorAction
• This class is one of mandatory user classes to control the generation of primaries.

– This class itself should NOT generate primaries but invoke
GeneratePrimaryVertex() method of primary generator(s) to make primaries.

• Constructor
– Instantiate primary generator(s)
– Set default values to it(them)

• GeneratePrimaries() method
– Invoked at the beginning of each event.
– Can randomize particle-by-particle value(s)
– Can set these values to primary generator(s)

– Invokes GeneratePrimaryVertex() method of primary generator(s)

• Your concrete class of G4VUserPrimaryGeneratorAction must be instantiated in the
Build() method of your G4VUserActionInitialization

4

Action

G4VUserPrimaryGeneratorAction
MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()

{

G4int n_particle = 1;

fparticleGun = new G4ParticleGun(n_particle);

// default particle kinematic

G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();

G4ParticleDefinition* particle = particleTable->FindParticle("gamma");

fparticleGun->SetParticleDefinition(particle);

fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));

fparticleGun->SetParticleEnergy(100.*MeV);

fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));

}

void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)

{

fparticleGun->SetParticleMomentum(G4RandomDirection());

fparticleGun->GeneratePrimaryVertex(anEvent);

}

5

Co
ns

tru
ct

or
 :

In
vo

ke
d

on
ly

 o
nc

e
In

vo
ke

d
on

ce

pe
r e

ac
h

ev
en

t

Version 10.5

Built-in primary particle generators

Built-in concrete classes of G4VPrimaryGenerator

7

G4VPrimaryGenerator

G4ParticleGun

G4GeneralParticleSource G4SingleParticleSource

G4HEPEvtInterface

(used by G4GeneralParticleSource)

G4HEPMCInterface

G4ParticleGun
• Concrete implementations of G4VPrimaryGenerator

– A good example for experiment-specific primary generator implementation
• It shoots one primary particle of a certain energy from a certain point at a certain

time to a certain direction.
– Various set methods are available
– Intercoms commands are also available for setting initial values

• One of most frequently asked questions is :
I want “particle shotgun”, “particle machinegun”, etc.

• Instead of implementing such a fancy weapon, in your implementation of
UserPrimaryGeneratorAction, you can
– Shoot random numbers in arbitrary distribution

– Use set methods of G4ParticleGun
– Use G4ParticleGun as many times as you want
– Use any other primary generators as many times as you want to make

overlapping events

8

What to do and where to do

• In the constructor of your UserPrimaryGeneratorAction
– Instantiate G4ParticleGun
– Set default values by set methods of G4ParticleGun

• Particle type, kinetic energy, position and direction
• In your macro file or from your interactive terminal session

– Set values for a run
• Particle type, kinetic energy, position and direction

• In the GeneratePrimaries() method of your UserPrimaryGeneratorAction
– For example, shoot random number(s) and prepare track-by-track or event-

by-event values
• Kinetic energy, position and direction

– Use set methods of G4ParticleGun to set such values
– Then invoke GeneratePrimaryVertex() method of G4ParticleGun
– If you need more than one primary tracks per event, loop over randomization

and GeneratePrimaryVertex().

• examples/basic/B5/src/B5PrimaryGeneratorAction.cc is a good example to start
with.

9

G4VUserPrimaryGeneratorAction
void T01PrimaryGeneratorAction::

GeneratePrimaries(G4Event* anEvent)
{ G4ParticleDefinition* particle;
G4int i = (int)(5.*G4UniformRand());
switch(i)
{ case 0: particle = positron; break; ... }
particleGun->SetParticleDefinition(particle);
G4double pp =
momentum+(G4UniformRand()-0.5)*sigmaMomentum;

G4double mass = particle->GetPDGMass();
G4double Ekin = sqrt(pp*pp+mass*mass)-mass;
particleGun->SetParticleEnergy(Ekin);
G4double angle = (G4UniformRand()-0.5)*sigmaAngle;
particleGun->SetParticleMomentumDirection

(G4ThreeVector(sin(angle),0.,cos(angle)));
particleGun->GeneratePrimaryVertex(anEvent);

}

• You can repeat this for generating more than one primary particles.

10

Interfaces to HEPEvt and HepMC

• Other concrete implementations of G4VPrimaryGenerator ready to use

– A good example for experiment-specific primary generator implementation

• G4HEPEvtInterface

– Suitable to /HEPEVT/ common block, which many of (FORTRAN) HEP

physics generators are compliant to.

– ASCII file input

• G4HepMCInterface

– An interface to HepMC class, which a few new (C++) HEP physics

generators are compliant to.

– ASCII file input or direct linking to a generator through HepMC.

11

reconstruction
Simulation chain for HEP experiment
(slide from Introduction)

Generator
Event
recor

d
Detector Simulation

Detector
Construct

ion

‘Hits’ ‘Digits’

12

Pythia8,
Herwig++,

…

HepMC

Geant4

G4GeneralParticleSource

• Yet another concrete implementation of G4VPrimaryGenerator
– Suitable especially to space applications

MyPrimaryGeneratorAction::
MyPrimaryGeneratorAction()

{ generator = new G4GeneralParticleSource; }
void MyPrimaryGeneratorAction::

GeneratePrimaries(G4Event* anEvent)
{ generator->GeneratePrimaryVertex(anEvent); }

• Detailed description
Section 2.7 of Application Developer’s Guide

13

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch02s07.html

Primary particle - M. Asai (SLAC)

G4GeneralParticleSource

• Primary vertex can be randomly chosen on the surface of a certain volume.

• Momentum direction and kinetic energy of the primary particle can also be

randomized.

• Distribution could be set by UI commands.

• Capability of event biasing (variance reduction).

– By enhancing particle type, distribution of vertex point, energy and/or

direction

14

Square plane, cosine-law direction, linear energy
Spherical surface, isotropic radiation, black-body energy Cylindrical surface, cosine-law radiation, Cosmic diffuse

energy Spherical volume with z biasing, isotropic radiation with
theta and phi biasing, integral arbitrary point-wise
energy distribution with linear interpolation.

Example commands of General Particle Source

15

two beams in a generator
#
beam #1
default intensity is 1 now change to 5.
/gps/source/intensity 5.
#
/gps/particle proton
/gps/pos/type Beam
#
the incident surface is in the y-z plane
/gps/pos/rot1 0 1 0
/gps/pos/rot2 0 0 1
#
the beam spot is centered at the origin and is of
1d gaussian shape with a 1 mm central plateau
/gps/pos/shape Circle
/gps/pos/centre 0. 0. 0. mm
/gps/pos/radius 1. mm
/gps/pos/sigma_r .2 mm
#
the beam is travelling along the X_axis with
5 degrees dispersion
/gps/ang/rot1 0 0 1
/gps/ang/rot2 0 1 0
/gps/ang/type beam1d
/gps/ang/sigma_r 5. deg
#
the beam energy is in gaussian profile
centered at 400 MeV
/gps/ene/type Gauss
/gps/ene/mono 400 MeV
/gps/ene/sigma 50. MeV

(macro continuation…)

beam #2
2x the instensity of beam #1
/gps/source/add 10.
#
this is a electron beam
/gps/particle e-
/gps/pos/type Beam
it beam spot is of 2d gaussian profile
with a 1x2 mm2 central plateau
it is in the x-y plane centred at the orgin
/gps/pos/centre 0. 0. 0. mm
/gps/pos/halfx 0.5 mm
/gps/pos/halfy 1. mm
/gps/pos/sigma_x 0.1 mm
the spread in y direction is stronger
/gps/pos/sigma_y 0.2 mm
#
#the beam is travelling along -Z_axis
/gps/ang/type beam2d
/gps/ang/sigma_x 2. deg
/gps/ang/sigma_y 1. deg
gaussian energy profile
/gps/ene/type Gauss
/gps/ene/mono 600 MeV
/gps/ene/sigma 50. MeV

Particle Gun vs. General Particle Source

• Particle Gun
– Simple and naïve
– Shoot one track at a time
– Easy to handle.

• Use set methods to
alternate track-by-track or
event-by-event values.

• General Particle Source
– Powerful
– Controlled by UI commands.

• Almost impossible to
control through set
methods

– Capability of shooting particles
from a surface of a volume.

– Capability of randomizing
kinetic energy, position and/or
direction following a user-
specified distribution
(histogram).

• If you need to shoot primary particles from a surface of a volume, either
outward or inward, GPS is the choice.
• If you need a complicated distribution, not flat or simple Gaussian, GPS is the
choice.
• Otherwise, use Particle Gun.

16

Version 10.5

Pre-assigned decay

Pre-assigned decay

• By default, when an unstable particle comes to its decay point,

G4DecayProcess looks up the decay table defined in the G4ParticleDefinition of

this particle type and randomly selects a decay channel.

• Alternatively, you may define a particular decay channel to G4PrimaryParticle.

– Then, G4DecayProcess takes that channel without looking up the decay

table and Lorentz-boost.

• Two major use cases.

– Shooting exotic primary particle, e.g. Higgs. Geant4 does not know how to

decay Higgs, thus you have to define the decay daughters.

– Forcing decay channel for each particle, e.g. forcing a rare channel

18

Pre-assigned decay products
• Physics generator can assign a decay channel for each individual particle

separately.

– Decay chain can be “pre-assigned”.

• A parent particle in the form of G4Track object travels in the detector, bringing “pre-
assigned” decay daughters as objects of G4DynamicParticle.

– When the parent track comes to the decay point, pre-assigned daughters
become to secondary tracks, instead of randomly selecting a decay channel
defined to the particle type. Decay time of the parent can be pre-assigned as
well.

Primary particle - M. Asai (SLAC)

19

D0 µ- nµ

K- µ+ nµ

B-

G4PrimaryParticle

B-

G4Track

D0 µ- nµ

K- µ+ nµ

pre-assigned decay products
K- µ+ nµ

D0

µ-

nµ
B-

K-

µ+

nµ

D0

Conclusions

• User primary generator action is a mandatory class that user must
implement
– this class can re-use existing primary generators
– it plays the role of providing ‘primary particles’ that Geant4

transports through the detector

• ‘particle guns’ used for test-beam or fixed target simulations
• General Particle Source capable of shooting particles from a

surface of a volume
– useful for space applications, medical applications, etc

• interface to HepMC event record used for MC event generators

20

