
Detector Simulation
User Actions, Hits and Digits

1

Witek Pokorski
Alberto Ribon

CERN

8-9.02.2021

What do we need to run simulation?

2

• Given geometry, physics and primary track generation, Geant4 does proper physics simulation "silently".
• You have to add a bit of code to extract information useful to you.

• The user action classes, if provided, are called by Geant4 kernel during all phases of tracking

p+

p+

PrimaryGenerator Geometry PhysicsList

UserActions SensitiveDetectors

Hits
Digits

Statistics,
Histograms,

etc

User Application

User Actions - Overview

• mandatory Users actions classes
– G4VUserActionInitialization
– G4VUserPrimaryGeneratorAction

• optional Geant4 User Action classes
– G4UserRunAction
– G4UserEventAction
– G4UserTrackingAction
– G4UserSteppingAction
– G4UserStackingAction

• fully customizable (empty by default)
– provide ‘BeginOf…’ and ’EndOf…’ methods called

automatically by the kernel
• the user action classes are ‘user hooks’ to setup and/or

modify the simulation or collect information about the run
– allow to take actions specific for the given simulation

• simulated only relevant particles
• save specific information, fill histograms
• speed-up simulation by applying different limits

3

R
u
n

Event
Stack

Event
Stack

Event
Stack

Event
Stack

Tracks Steps

G4UserRunAction (1/2)

• virtual G4Run* GenerateRun()

– This method is invoked at the beginning of BeamOn.

– User hook to provide derived G4Run and create his/her own

concrete class to store some information about the run

– Ideal place to set variables which affect the physics table (such

as production thresholds) for a particular run, because

GenerateRun() is invoked before the calculation of the physics

table.

• virtual void BeginOfRunAction(const G4Run*)

– Invoked before entering the event loop

– Typical use of this method would be to initialize and/or book

histograms for a particular run

– This method is invoked after the calculation of the physics

tables

4

R

u

n

G4UserRunAction (2/2)

• virtual void EndOfRunAction(const G4Run*)
– This method is invoked at the very end of the run

processing
– It is typically used for a simple analysis of the

processed run
• virtual void SetMaster(G4bool val=true)
• G4bool IsMaster()

– Commonly, a MT simulation will have a master-thread
instance and a worker thread instance — provides
ability to discern whether instance is for worker or
master thread

5

R
u
n

G4UserEventAction

• virtual void BeginOfEventAction(const G4Event*)

– This method is invoked before converting the primary

particles to G4Track objects

– A typical use of this method would be to initialize and/or

book histograms for a particular event

• virtual void EndOfEventAction(const G4Event*)

– This method is invoked at the very end of event

processing

– Typically used for a simple analysis of the processed

event

– If the user wants to keep the currently processing event

until the end of the current run, the user can invoke

G4EventManager::GetEventManager()->KeepTheCurrentEvent()

so that it is kept in G4Run object.

• can be used for visualization of particular events

6

R

u

n

Event

Event

G4UserStackingAction (1/2)

• G4UserStackingAction is a user-hook to reorder the priority of
the particle stack

• virtual G4ClassificationOfNewTrack ClassifyNewTrack(const

G4Track*)

– invoked by G4StackManager whenever a new G4Track
object is ”pushed” onto a stack by G4EventManager

– Returns an enumerator whose value indicates to which

stack the track should be sent. Value is determined by the

user from four possible values

– fUrgent — track is placed in urgent stack

– fWaiting — track is placed in the waiting stack (until

urgent is empty)

– fPostpone — track is postponed to next event

– fKill — track is deleted immediately and not stored

7

R
u

n

Event

Stack

Event

Stack

Event

Stack

Event

Stack

G4UserStackingAction (2/2)

• virtual void NewStage()

– Invoked when the urgent stack is empty and the waiting stack contains at least one
G4Track object

– User may kill or re-assign to different stacks all the tracks in the waiting stack
[G4StackManager::ReClassify()]

– If no user action is taken, all tracks in the waiting stack are transferred to the urgent
stack

– The user may decide to abort the current event here

• virtual void PrepareNewEvent()

– Invoked at the beginning of each event

– At this point no primary particles have been converted to tracks, so the urgent and
waiting stacks are empty

– However, there may be tracks in the postponed-to-next-event stack; for each of
these the ClassifyNewTrack() method is called and the track is assigned to the
appropriate stack

8

G4UserTrackingAction

• Provides user hooks to access a particle track at the
beginning and end of the particle’s lifetime

• virtual void BeginOfTrackingAction(const G4Track*)
– Invoked at the beginning of a particle’s lifetime

(creation)
• virtual void EndOfTrackingAction(const G4Track*)

– Invoked at the end of a particles lifetime
– End of particle’s lifetime can occur from

• Zero kinetic energy
• Track is explicitly killed (fStopAndKill,

fKillTrackAndSecondaries)
• Particle leaves the “world”

9

Event

Tracks

G4UserSteppingAction

• Provides user hook to a particle step

• virtual void UserSteppingAction(const G4Step*)

– Invoked after a particle has undergone a “step”

– A step can be defined by

• Undergoing physical process (e.g. ionization, decay)

• Transport step to boundary

• Typically used for custom scoring that is not supported by

primitive scorers

• The most frequently called user hook

• Special attention must be paid to thread-safety when custom

scoring is done here

10

Tracks Steps

Sensitive Detectors, Hits and Digits - Overview

• Sensitive Detector (SD) is assigned to a
logical volume

• SD::ProcessHits are invoked when a step
takes place in the logical volume that they
are assigned to

• SDs can be used to simulate the “read-
out” of your detector:
– a way to declare a geometric element

“sensitive” to the passage of particles
– gives the user a handle to collect

quantities (Hits) from these elements
• energy deposited, position, time

information
• ‘Digitization’ consists of converting ‘Hits’

into the detector response in terms of
electric current & voltage signals (digits),
as it would happen in the real experiment
– same reconstruction chain can be

applied for both real and simulated
data

11

SD::ProcessHits(G4Step*…)

Hits

Non sensitive

Sensitive

DigitsDigitize()

Defining a Sensitive Detector

• Sensitive detector objects are created and assigned to logical volumes in a user
detector construction class in ConstructSDandField() function

• Creating SD object:

12

G4VSensitiveDetector* mySD
= new MySD("MySD", “MyHitsCollection”);

• Each sensitive detector object must have a unique name.
• More than one sensitive detector instances (objects) of the same type (class)

can be defined with different detector name
• Assigning to a logical volume via the volume name

// defined previously
// G4VSensitiveDetector* mySD = ...
SetSensitiveDetector(“MyLVName”, mySD);

Sensitive Detector Class (1/2)

• A sensitive detector is defined in a user class, MySD, derived from
G4VSensitiveDetector base class

– It defines the following user functions which are invoked by Geant4 kernel during
event processing:

– At begin of event: Initialize()

– In a step (if in the associated volume): ProcessHits(..)

– At end of event: EndOfEvent(..)

13

Sensitive Detector Class (2/2)

14

#include "G4VSensitiveDetector.hh"
...
class MySD : public G4VSensitiveDetector {
public:

MySD(const G4String& name,
const G4String& hitsCollectionName);
virtual ~MySD();

virtual void Initialize(G4HCofThisEvent* hce);
virtual G4bool ProcessHits(G4Step* step,

G4TouchableHistory* history);
virtual void EndOfEvent(G4HCofThisEvent* hce);

};

User functions
called by Geant4
kernel

A Hit

• Hit is a snapshot of the physical interaction of a
track or an accumulation of interactions of
tracks in the sensitive region of your detector

• A tracker detector typically generates a hit for
every single step of every single (charged) track.

– A tracker hit typically contains:

• Position and time, Energy deposition of
the step, Track ID

• A calorimeter detector typically generates a hit
for every “cell”, and accumulates energy
deposition in each cell for all steps of all tracks.

– A calorimeter hit typically contains:

• Sum of deposited energy , Cell ID

15

step in tracker
volume

MyHit:
Edep
x,y,z
time

User Hit Class

• You can store various types
information by implementing your
own concrete Hit class.
– In this example we store the

energy deposition of the step

16

class MyHit
{
public:

MyHit();
// set/get methods; eg.
void SetEdep (G4double edep);
G4double GetEdep() const;

private:
// some data members; eg.
G4double fEdep; // energy

deposit
};

MyHit.hh

• Typically for each information
to be stored in a hit we add:

Data member G4type fData; G4double fEdep;
Set function void SetData(G4type data); void SetEdep(G4double edep):
Get function G4type GetData() const; G4double GetEdep() const;

Create a Hit

• A hit can be created when a step takes place in a sensitive logical volume, in a user
sensitive detector function ProcessHits(..)

17

G4bool MySD::ProcessHits(G4Step* step, G4TouchableHistory* /*history*/)
{

MyHit* newHit = new MyHit();
// Get some properties from G4Step and set them to the hit
// newHit->SetXYZ();
G4double edep = step->GetTotalEnergyDeposit();
newHit->SetEdep(edep);
// ...
return true;

}

• Currently, returning boolean value is not used.
• The “history” will be given only if a Readout geometry is defined to this sensitive

detector (the readout geometry is not presented in this course)

Hits Collections

• Many hits can be created during one event

– Hit objects must be stored in a dedicated collection

• Geant4 provides a dedicated class, G4THitsCollection, which allows to associate the hits
collections with G4Event object and can be then accessed

– through G4Event at the end of event, to be used for analyzing an event

– through G4SDManager during processing an event, to be used for event filtering.

• When using Geant4 hits collections, the user hit class must derive from G4VHit base
class

• Users may also define their own hits collections, eg.
– Using STL library: std::vector<MyHit>

– Using their application framework, eg. in the context of ROOT, it can be a ROOT
collection (TObjArray, TClonesArray)

18

User Geant4 Hit Class

• Hits collection of a concrete hit class is defined as a specialization of the
G4THitsCollection template class
– Note the analogy of G4THitsCollection<MyHit> with std::vector<MyHit>
– To avoid long names we define a name shortcut using typedef

19

#include "G4VHit.hh"
class MyHit : public G4VHit
{

// the class definition as before
// utility functions (called by Geant4)
virtual void Draw();
virtual void Print();

};

#include "G4THitsCollection.hh"
typedef G4THitsCollection<MyHit> MyHitsCollection;

When using Geant4
hits collections,
the user hit class
must derive from
G4VHit

MyHit.hh

Define Hits Collection (1/2)

• The name(s) of the hits collection(s) which is (are) handled by this sensitive detector is

defined in the constructor

– It is saved in the collectionName data member of the G4VSensitiveDetector base class

• In case your sensitive detector generates more than one kinds of hits (e.g. anode and

cathode hits separately), define all collection names.

20

void MySD::MySD(const G4String& name,
const G4String& hitsCollectionName) :

G4VSensitiveDetector(name), fHitsCollection(0)

{
collectionName.insert(hitsCollectionName);

}

Define Hits Collection (2/2)

21

void MySD::Initialize(G4HCofThisEvent* hce)
{

fHitsCollection = new MyHitsCollection (SensitiveDetectorName,
collectionName[0]);

G4int hcID
= G4SDManager::GetSDMpointer()>GetCollectionID(collectionName[0]);

hce->AddHitsCollection(hcID, hitsCollection);
}

• The hits collection object is created in Initialize()
• This method is invoked at the beginning of each event

• The collectionID, hcID, is available after this sensitive detector object is constructed and
registered to G4SDManager.
• Thus, GetCollectionID() method cannot be invoked in the constructor of this

detector class.
• It can be then attached to G4HCofThisEvent object given in the argument.

• This object is then available via G4Event object

Filling a Hits Collection (1/2)

• The hits are usually inserted in the hits collection when they are created

22

void MySD::SomeFunction(...)
{

// Create a hit
MyHit* newHit = new MyHit();
// Set some properties to the hit
// newHit->SetXYZ();
// Add the hit in the SD hits collection
fHitsCollection->insert(newHit);

}

• Depending on the detector type SomeFunction() can be either Initialize()
or ProcessHits()

MySD.cc

Filling a Hits Collection (2/2)

• The way how the hits collections are filled depends on a detector type
• A tracker detector typically generates a hit for every single step of every single (charged)

track
– Hits are created in MySD::ProcessHits()
– They typically contain

• Position and time, energy deposition of the step, track ID
• A calorimeter detector typically generates a hit for every cell, and accumulates energy

deposition in each cell for all steps of all tracks
– Hits are created in MySD::Initialize()
– They typically contain:

• Sum of deposited energy, Cell ID

23

Digitization

• digits are created using information of hits and/or other digits by a digitizer module
• digitizer module is not associated with any volume

– you have to implicitly invoke the Digitize() method of your
concrete G4VDigitizerModule class

• G4VDigi is an abstract base class which represents a digit
– inherit this base class and derive your own concrete digit class(es)

• G4TDigiCollection is a template class for digits collections, which is derived from the
abstract base class G4VDigiCollection

• G4VDigitizerModule is an abstract base class which represents a digitizer module
– pure virtual method Digitize() must be implemented in the concrete digitizer class

• G4DigiManager is the singleton manager class of the digitizer modules
– concrete digitizer modules should be registered to G4DigiManager with their

unique names

24

G4DigiManager * fDM = G4DigiManager::GetDMpointer();
MyDigitizer * myDM = fDM->FindDigitizerModule("/myDet/myEMdigi");
myDM->Digitize();

Conclusion

• User Actions and Sensitive Detectors are essential for any simulation application
– without User Action and/or Sensitive Detectors, the simulation would run ‘silently’

not producing any output

• User Actions allow to
– control the simulation flow

• at the level of run, event, stack, track, step
– extract information

• Sensitive Detectors (SD) are attached to specific volumes and allow to ‘mimic’ the
readout of the real detector
– they allow to create ‘hits’ which then can be ‘digitized’

• Digitization modules are not associated to any volumes
– Digitize() method needs to be invoked explicitely

25

Exercise

• We will be working with example B4 (examples/basic/B4) which illustrates all the items

discussed in this lecture

– go through the README file

• We will start with Variant ‘a’ where user actions are used

– go trough the SteppingAction and EventAction to understand how the statistics is

collected

– modify the actions to collect separately the statistics for positive, negative as well

as neutral particles

• We now move to variant ‘c’ where Sensitive Detectors are used

– go through the SensitiveDetector implementation to understand how the ‘hits’ are

created

– modify the implementation to collect hits only with the energy above some

threshold (for instance 1keV)

26

