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Introduction

Typical problems in HEP

Classification of objects

separate real and fake leptons/jets/etc.

Signal enhancement relative to background

Regression: best estimation of a parameter

lepton energy, Emiss
T value, invariant mass, etc.

Discrimination of signal from background in HEP

Event level (Higgs searches, . . . )

Cone level (tau-vs-jet reconstruction, . . . )

Lifetime and flavour tagging (b-tagging, . . . )

Track level (particle identification, . . . )

Cell level (energy deposit from hard scatter/pileup/noise, . . . )
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Introduction

Input information from various sources

Kinematic variables (masses, momenta, decay angles, . . . )

Event properties (jet multiplicity, sum of charges, brightness . . . )

Event shape (sphericity, aplanarity, . . . )

Detector response (silicon hits, dE/dx , Cherenkov angle, shower
profiles, muon hits, . . . )

Most data are (highly) multidimensional

Use dependencies between x = {x1, · · · , xn} discriminating variables

Approximate this n-dimensional space with a function f (x) capturing
the essential features

f is a multivariate discriminant

For most of these lectures, use binary classification:

an object belongs to one class (e.g. signal) if f (x) > q, where q is
some threshold,
and to another class (e.g. background) if f (x) ≤ q
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Optimal discrimination: 1-dimension case

Where to place a cut x0 on variable x?

Background density
p(x, B) = p(x|B) p(B)

Signal densitySignal density
p(x, S) = p(x|S) p(S)

x

p 
(x

) 
= 

p(
x
, 
S

) 
+ 

p(
x
, 
B

)

x
0

Optimal choice: minimum misclassification cost at decision boundary
x = x0
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Optimal discrimination: cost of misclassification

C (x0) = CS

∫
H(x0 − x)p(x , S)dx signal loss

+ CB

∫
H(x − x0)p(x ,B)dx background contamination

CS = cost of misclassifying signal as background
CB = cost of misclassifying background as signal

                             Background
                                  contamination
           Signal loss

x
0

H(x): Heaviside step
function

H(x) = 1 if x > 0,
0 otherwise

Optimal choice: when cost function C is minimum
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Optimal discrimination: Bayes discriminant

Minimising the cost

Minimise
C (x0) = CS

∫
H(x0 − x)p(x ,S)dx + CB

∫
H(x − x0)p(x ,B)dx

with respect to the boundary x0:

0 = CS

∫
δ(x0 − x)p(x , S)dx − CB

∫
δ(x − x0)p(x ,B)dx

= CSp(x0, S)− CBp(x0,B)

This gives the Bayes discriminant:

BD =
CB

CS
=

p(x0,S)

p(x0,B)
=

p(x0|S)p(S)

p(x0|B)p(B)
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Optimal discrimination: Bayes limit

Generalising to multidimensional problem
The same holds when x is an n-dimensional variable:

BD =
p(x |S)

p(x |B)
× p(S)

p(B)

From Bayes theorem (p(A|B)p(B) = p(B|A)p(A)) and sum of
probabilities (p(S |x) + p(B|x) = 1):

p(S |x) =
BD

1 + BD

Bayes limit

p(S |x) = BD/(1 + BD) is what should be achieved to minimise cost,
reaching classification with the fewest mistakes

Fixing relative cost of background contamination and signal loss
q = CB/(CS + CB), q = p(S |x) defines decision boundary:

signal-rich if p(S |x) ≥ q
background-rich if p(S |x) < q

Any function that approximates conditional class probability p(S |x)
with negligible error reaches the Bayes limit
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Optimal discrimination: using a discriminant

How to construct p(S|x)?

k = p(S)/p(B) typically unknown

Problem: p(S |x) depends on k!

Solution: it’s not a problem. . .

Define a multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
=

p(x |S)

p(x |S) + p(x |B)

Now:

p(S |x) =
D(x)

D(x) +
(
1− D(x)

)
/k

Cutting on D(x) is equivalent to cutting on p(S |x), implying a
corresponding (unknown) cut on p(S |x)
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Machine learning: learning from examples

Several types of problems

Classification/decision:

signal or background
type Ia supernova or not
will pay his/her credit back on time or not

Regression: estimating a parameter value (energy of a particle,
brightness of a supernova, . . . ) [mostly ignored in these lectures]

Clustering (cluster analysis):

in exploratory data mining, finding features

Our goal

Teach a machine to learn the discriminant f (x) using examples from
a training dataset

Be careful to not learn too much the properties of the training sample

no need to memorise the training sample
instead, interested in getting the right answer for new events
⇒ generalisation ability
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Machine learning and connected fields

Machine Learning
Statistics

Optimization
Artificial intelligence

Neuroscience

Cognitive science

Signal processing

Information theory

©Balàzs Kégl

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 11/183



Machine learning: (un)supervised learning
Supervised learning

Training events are labelled: N examples (x , y)1, (x , y)2, . . . , (x , y)N
of (discriminating) feature variables x and class labels y

The learner uses example classes to know how good it is doing

Reinforcement learning

Instead of labels, some sort of reward system (e.g. game score)

Goal: maximise future payoff by optimising decision policy

May not even “learn” anything from data, but remembers what
triggers reward or punishment

Unsupervised learning

e.g. clustering: find similarities in training sample, without having
predefined categories

Discover good internal representation of the input

Not biased by pre-determined classes ⇒ may discover unexpected
features!
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Finding the multivariate discriminant y = f (x)

Given our N examples (x , y)1, . . . , (x , y)N we need
a function class F =

{
f (x ,w)

}
(w : parameters of prediction to be

found)
a constraint Q(w) on F (regularisation term)
a loss or error function L(y , f ), encoding what is lost if f is poorly
chosen in F (i.e., f (x ,w) far from the desired y = f (x))

Cannot minimise L directly (would depend on the dataset used), but
rather its average over a training sample, the empirical risk:

R(w) =
1

N

N∑
i=1

L
(
yi , f (xi ,w)

)
subject to constraint Q(w), so we minimise the cost function:

C (w) = R(w) + λQ(w)

where λ controls the strength of regularisation

At the minimum of C (w) we select f (x ,w∗), our estimate of y = f (x)
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Choice of function class: training

0 1 2 3 4 5 6
0
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x

y

Data generated from an unknown function with unknown noise

©Balàzs Kégl
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Choice of function class: training
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Constant least squares fit, RMSE = 0.915
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Choice of function class: training
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Linear least squares fit, RMSE = 0.581
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Choice of function class: training
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Quadratic least squares fit, RMSE = 0.579
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Choice of function class: training
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Cubic least squares fit, RMSE = 0.339
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Choice of function class: training
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PolyH6L least squares fit, RMSE = 0.278
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Choice of function class: training
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PolyH9 L least squares fit, RMSE =0
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Choice of function class

Quality of fit

Increasing degree of polynomial increases flexibility of function

Higher degree ⇒ can match more features

If degree = # points, polynomial passes through each point: perfect
match!

Is it meaningful?

It could be:

if there is no noise or uncertainty in the measurement
if the true distribution is indeed perfectly described by such a
polynomial

. . . not impossible, but not very common. . .

Solution: testing and/or validation sample

Use independent sample to validate the result

Expected: performance will also increase, go through a maximum and
decrease again, while it keeps increasing on the training sample
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Choice of function class: testing
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Data generated from an unknown function with unknown noise
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Choice of function class: testing
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Const. least squares fit, training RMSE = 0.915, test RMSE = 1.067
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Choice of function class: testing
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Linear least squares fit, training RMSE = 0.581, test RMSE = 0.734
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Choice of function class: testing
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Quadr. least squares fit, training RMSE = 0.579, test RMSE = 0.723
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Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 16/183



Choice of function class: testing
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Cubic least squares fit, training RMSE = 0.339, test RMSE = 0.672
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Choice of function class: testing
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PolyH6L least squares fit, training RMSE = 0.278, test RMSE = 0.72
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Choice of function class: testing
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PolyH9 L least squares fit, training RMSE = 0, test RMSE = 46.424
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Choice of function class
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Training and test RMSE's for polynomial fits of different degrees
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Capacity control and regularisation

Trade-off between approximation error and estimation error

Take into account sample size

Measure (and penalise) complexity

Use independent test sample

In practice, no need to correctly guess the function class, but need
enough flexibility in your model, balanced with complexity cost
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Multivariate discriminants

4 Random grid search

5 Genetic algorithms

6 Quadratic and linear discriminants

7 Support vector machines

8 Kernel density estimation

9 (Boosted) Decision trees

10 Neural networks

11 Deep neural networks

12 Machine learning and particle physics
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Multivariate discriminants

Reminder

To solve binary classification problem with the fewest number of
mistakes, sufficient to compute the multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
where:

s(x) = p(x |S) signal density
b(x) = p(x |B) background density

Cutting on D(x) is equivalent to cutting on probability p(S |x) that
event with x values is of class S

Which approximation to choose?

Best possible choice: cannot beat Bayes limit (but usually impossible
to define)

No single method can be proven to surpass all others in particular case

Advisable to try several and use the best one
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Cut-based analysis and grid search

Cut-based analysis

Simple approach: cut on each discriminating variable

Difficulty: how to optimise the cuts?

Grid search

x

y

©Harrison Prosper

Split each variable in K values

Apply cuts at each grid point:
x > xi , y > yi

Number of points scales with
Kn: curse of dimensionality
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Random grid search

x
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i

 

 

H

Number of cut points
independent of dimensionality

Sampled points density follows
signal density

Use each point in signal sample
as grid point:

©Harrison Prosper
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Random grid search example

©Harrison Prosper

Comparison to BNN

Blue: 5-dim Bayesian neural
network discriminant

Points: each cut point from a
5-dim RGS calculation

Conclusions:

RGS can find very good
criteria with high
discrimination
but it usually cannot
compete with a full-blown
multivariate discriminant
and never outsmarts it
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Genetic algorithms: survival of the fittest

Inspired by biological evolution

Model: group (population) of abstract representations
(genome/discriminating variables) of possible solutions
(individuals/list of cuts)

Typical processes at work in evolutionary processes:

inheritance
mutation
sexual recombination (a.k.a. crossover)

Fitness function: value representing the individual’s goodness, or
comparison of two individuals

For cut optimisation:

good background rejection and high signal efficiency
compare individuals in each signal efficiency bin and keep those with
higher background rejection
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Genetic algorithms

Better solutions more likely to be selected for mating and mutations,
carrying their genetic code (cuts) from generation to generation

Algorithm:
1 Create initial random population (cut ensemble)
2 Select fittest individuals
3 Create offsprings through crossover (mix best cuts)
4 Mutate randomly (change some cuts of some individuals)
5 Repeat from 2 until convergence (or fixed number of generations)

Good fitness at one generation ⇒ average fitness in the next

Algorithm focuses on region with higher potential improvement
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Quadratic discriminants: Gaussian problem

Suppose densities s(x) and b(x) are multivariate Gaussians:

Gaussian(x |µ,Σ) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x−µ)T Σ−1(x−µ)

)
with vector of means µ and covariance matrix Σ

Then Bayes factor B(x) = s(x)/b(x) (or its logarithm) can be
expressed explicitly:

lnB(x) = λ(x) ≡ χ2(µB ,ΣB)− χ2(µS ,ΣS)

Decision
boundary

with χ2(µ,Σ) = (x − µ)TΣ−1(x − µ)

Fixed value of λ(x) defines
quadratic hypersurface partitioning
n-dimensional space into signal-rich
and background-rich regions

Optimal separation if s(x) and b(x)
are indeed multivariate Gaussians
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Quadratic discriminant

©Balàzs Kégl
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Quadratic discriminant
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Quadratic discriminant
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Quadratic discriminant
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Linear discriminant: Fisher’s discriminant

If in λ(x) the same covariance matrix is used for each class (e.g.
Σ = ΣS + ΣB) one gets Fisher’s discriminant:

λ(x) = w · x with w ∝ Σ−1(µS − µB)

w

kxw #"

kxw $"

Optimal linear separation

Works only if signal and
background have different
means!

Optimal classifier (reaches the
Bayes limit) for linearly
correlated Gaussian-distributed
variables
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Support vector machines

Fisher discriminant: may fail completely for highly non-Gaussian
densities

But linearity is good feature ⇒ try to keep it

Generalising Fisher discriminant: data non-separable in n-dim space
Rn, but better separated if mapped to higher dimension space RH :
h : x ∈ Rn → z ∈ RH

Use hyper-planes to partition higher dim space: f (x) = w · h(x) + b

Example:h : (x1, x2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2 )

x1

x2

z1

z2

z3
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Support vector machines: separable data

Consider separable data in RH , and three parallel hyper-planes:
w · h(x) + b = 0 (separating hyper-plane between red and blue)

w · h(x1) + b = +1 (contains h(x1))

w · h(x2) + b = −1 (contains h(x2))

Multivariate Discriminants,  Harrison B. Prosper 

plane: w.h(x

h(x1)

h(x2)

w

Subtract blue from red:
w ·
(
h(x1)− h(x2)

)
= 2

With unit vector ŵ = w/‖w‖:
ŵ ·
(
h(x1)− h(x2)

)
= 2/‖w‖ = m

Margin m is distance between red and
blue planes

Best separation: maximise margin

⇒ empirical risk margin to minimise:
R(w) ∝ ‖w‖2
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Support vector machines: constraints

When minimising R(w), need to keep signal and background
separated

Label red dots y = +1 (“above” red plane) and blue dots y = −1
(“below” blue plane)

Since: w · h(x) + b > 1 for red dots

w · h(x) + b < −1 for blue dots

all correctly classified points will satisfy constraints:

yi
(
w · h(xi ) + b

)
≥ 1, ∀i = 1, . . . ,N

Using Lagrange multipliers αi > 0, cost function can be written:

C (w , b, α) =
1

2
‖w‖2 −

N∑
i=1

αi

[
yi
(
w · h(xi ) + b

)
− 1
]
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Support vector machines

Minimisation

Minimise cost function C (w , b, α) with respect to w and b:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
h(xi ) · h(xj)

)
At minimum of C (α), only non-zero αi correspond to points on red
and blue planes: support vectors

Kernel functions

Issues:

need to find h mappings (potentially of infinite dimension)
need to compute scalar products h(xi ) · h(xj)

Fortunately h(xi ) · h(xj) are equivalent to some kernel function
K (xi , xj) that does the mapping and the scalar product:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi , xj)
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Support vector machines: example

h : (x1, x2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2 )

h(x) · h(y) = (x2
1 ,
√

2x1x2, x
2
2 ) · (y2

1 ,
√

2y1y2, y
2
2 )

= (x · y)2

= K (x , y)

x1

x2

z1

z2

z3

In reality: do not know a priori the right kernel

⇒ have to test different standard kernels and use the best one
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Support vector machines: non-separable data

Even in infinite dimension space, data are often non-separable

Need to relax constraints:

yi
(
w · h(xi ) + b

)
≥ 1− ξi

x1

x2

margin 

support 
vectors

S
ep

ar
ab

le
 d

at
a

optimal hyperplane

N
on

-s
ep

ar
ab

le
 d

at
a

ξ1

ξ2

ξ4

ξ3

with slack variables ξi > 0

C (w , b, α, ξ) depends on ξ,
modified C (α, ξ) as well

Values determined during
minimisation
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Kernel density estimation (KDE)

Introduced by E. Parzen in the 1960s

Place a kernel K (x , µ) at each training point µ

Density p(x) at point x approximated by:

p(x) ≈ p̂(x) =
1

N

N∑
j=1

K (x , µj)
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Kernel density estimation (KDE)

Choice of kernel

Any kernel can be used

In practice, often product of Gaussians:

K (x , µ) =
n∏

i=1

Gaussian(xi |µ, hi )

each with bandwidth (width) hi

Optimal bandwidth

Too narrow: noisy approximation

Too wide: loose fine structure

In principle found by minimising risk function
R(p̂, p) =

∫ (
p̂(x)− p(x)

)2
dx

For Gaussian densities:
h = σ

(
4

(n + 2)N

)1/(n+4)

Far from optimal for non-Gaussian densities
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Kernel density estimation (KDE): example

with Gaussian optimal bandwidth
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Kernel density estimation (KDE)

Why does it work?

When N →∞:

p̂(x) =

∫
K (x , µ)p(µ)dµ

p(µ): true density of x

Kernel bandwidth getting smaller with N, so when N →∞,
K (x , µ)→ δn(x − µ) and p̂(x) = p(x)

KDE gives consistent estimate of probability density p(x)

Limitations

Choice of bandwidth non-trivial

Difficult to model sharp structures (e.g. boundaries)

Kernels too far apart in regions of low point density

(both can be mitigated with adaptive bandwidth choice)

Requires evaluation of N n-dimensional kernels

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 38/183



Kernel density estimation (KDE)
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KDE: choice of bandwidth

Overfitting

Underfitting
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(Boosted) Decision trees

x < 1.53

fail pass

fail pass
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fail pass
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fail pass
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y < 0.1

9 (Boosted) Decision trees
Decision trees

Algorithm
Tree hyperparameters
Splitting a node
Variable selection

Limitations
Boosted decision trees
Performance examples
BDTs in real physics cases
Software and example code
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Introduction

Decision tree origin

Machine-learning technique, widely used in social sciences.
Originally data mining/pattern recognition, then medical diagnosis,
insurance/loan screening, etc.
L. Breiman et al., “Classification and Regression Trees” (1984)

Basic principle

Extend cut-based selection

many (most?) events do not have all characteristics of signal or
background
try not to rule out events failing a particular criterion

Keep events rejected by one criterion and see whether other criteria
could help classify them properly

Binary trees

Trees can be built with branches splitting into many sub-branches

In this lecture: mostly binary trees
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Tree building algorithm

Start with all events (signal and background) = first (root) node

sort all events by each variable

for each variable, find splitting value with best separation between
two children

mostly signal in one child
mostly background in the other

select variable and splitting value with best separation, produce two
branches (nodes)

events failing criterion on one side
events passing it on the other

Keep splitting

Now have two new nodes. Repeat algorithm recursively on each node

Can reuse the same variable

Iterate until stopping criterion is reached

Splitting stops: terminal node = leaf
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Algorithm example

Consider signal (si ) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT ’s of all objects in the event
HT

sort all events by each variable:

ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):

pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)
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Decision tree output

Run event through tree

Start from root node

Apply first best cut

Go to left or right child node

Apply best cut for this node

...Keep going until...

Event ends up in leaf

DT Output

Purity
(

s
s+b , with weighted events

)
of leaf, close to 1 for signal and 0

for background

or binary answer (discriminant function +1 for signal, −1 or 0 for
background) based on purity above/below specified value (e.g. 1

2 ) in
leaf

E.g. events with HT < 242 GeV and Mt > 162 GeV have a DT
output of 0.82 or +1
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Tree construction parameters

Normalization of signal and background before training

Balanced classes: same total weight for signal and background events
(p = 0.5, maximal mixing)

Selection of splits

list of questions (variablei < cuti?, “Is the sky blue or overcast?”)

goodness of split (separation measure)

Decision to stop splitting (declare a node terminal)

minimum leaf size (for statistical significance, e.g. 100 events)

insufficient improvement from further splitting

perfect classification (all events in leaf belong to same class)

maximal tree depth (like-size trees choice or computing concerns)

Assignment of terminal node to a class

signal leaf if purity > 0.5, background otherwise
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Splitting a node

Impurity measure i (t)

maximal for equal mix of
signal and background

symmetric in psignal and
pbackground

minimal for node with either signal
only or background only

strictly concave ⇒ reward purer
nodes (favours end cuts with one
smaller node and one larger node)

Optimal split: figure of merit

Decrease of impurity for split s of node t into children tP and tF
(goodness of split):
∆i(s, t) = i(t)− pP · i(tP)− pF · i(tF )

Aim: find split s∗ such that:

∆i(s∗, t) = max
s∈{splits}

∆i(s, t)

Maximising ∆i(s, t) ≡ minimizing overall tree impurity

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 47/183



Splitting a node: examples

Node purity

Signal (background) event i with weight w i
s (w i

b)

p =

∑
i∈signal w

i
s∑

i∈signal w
i
s +

∑
j∈bkg w

j
b

Signal purity (= purity)
ps = p = s

s+b

Background purity
pb = b

s+b = 1− ps = 1− p

Common impurity functions

misclassification error
= 1−max(p, 1− p)

(cross) entropy
= −∑i=s,b pi log pi

Gini index signal purity
0 0.2 0.4 0.6 0.8 1

ar
b

it
ra

ry
 u

n
it

0

0.05

0.1

0.15
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0.25

Split criterion

Misclas. error

Entropy

Gini

Also cross section (− s2

s+b ) and excess significance (− s2

b )
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Splitting a node: Gini index of diversity

Defined for many classes

Gini =
∑i 6=j

i ,j∈{classes} pipj

Statistical interpretation

Assign random object to class i with probability pi .

Probability that it is actually in class j is pj

⇒ Gini = probability of misclassification

For two classes (signal and background)

i = s, b and ps = p = 1− pb

⇒ Gini = 1−∑i=s,b p
2
i = 2p(1− p) = 2sb

(s+b)2

Most popular in DT implementations

Usually similar performance to e.g. entropy
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Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:

not affected too much by “curse of dimensionality”
CPU consumption scales as nN logN with n variables and N training
events

Insensitive to duplicate variables (give same ordering ⇒ same DT)

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:

no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously
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Variable selection II

Transforming input variables

Completely insensitive to replacement of any subset of input variables
by (possibly different) arbitrary strictly monotone functions of them:

let f : xi → f (xi ) be strictly monotone
if x > y then f (x) > f (y)
ordering of events by xi is the same as by f (xi )
⇒ produces the same DT

Examples:

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore
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Variable selection III

Variable ranking (mean decrease impurity MDI)

Ranking of xi : add up decrease of impurity each time xi is used

Largest decrease of impurity = best variable

Shortcoming: masking of variables

xj may be just a little worse than xi but will never be picked

xj is ranked as irrelevant

But remove xi and xj becomes very relevant
⇒ careful with interpreting ranking

Solution: surrogate split

Compare which events are sent left or right by optimal split and by
any other split

Give higher score to split that mimics better the optimal split

Highest score = surrogate split

Can be included in variable ranking

Helps in case of missing data: replace optimal split by surrogate
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Variable selection IV

Permutation importance (mean decrease accuracy MDA)

Applicable to any already trained classifier

Randomly shuffle each variable in turn and measure decrease of performance

Important variable ⇒ big loss of performance

Can also be performed on validation sample

Beware of correlations [Breiman 2001]

Choosing variables

Usually try to have as few variables as possible

But difficult: correlations, possibly large number to consider, large phase
space with different properties in different regions

Brute force: with n variables train all n, n − 1, etc. combinations, pick best

Backward elimination: train with n variables, then train all n − 1 variables
trees and pick best one; now train all n − 2 variables trees starting from the
n − 1 variable list; etc. Pick optimal cost-complexity tree.

Forward greedy selection: start with k = 1 variable, then train all k + 1
variables trees and pick the best; move to k + 2 variables; etc.

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 53/183



Limitations
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9 (Boosted) Decision trees

Decision trees
Limitations
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Pruning a tree
Ensemble learning

Boosted decision trees
Performance examples
BDTs in real physics cases
Software and example code
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Tree instability: training sample composition

Small changes in sample can lead to very different tree structures
(high variance)

Performance on testing events may be as good, or not

Not optimal to understand data from DT rules

Does not give confidence in result:

DT output distribution discrete by nature
granularity related to tree complexity
tendency to have spikes at certain purity values (or just two delta
functions at ±1 if not using purity)
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Pruning a tree

Why prune a tree?

Possible to get a perfect classifier on training events

Mathematically misclassification error can be made as little as wanted

E.g. tree with one class only per leaf (down to 1 event per leaf if
necessary)

Training error is zero

But run new independent events through tree (testing or validation
sample): misclassification is probably > 0, overtraining
Pruning: eliminate subtrees (branches) that seem too specific to
training sample:

a node and all its descendants turn into a leaf

Pruning algorithms (details in backup )

Pre-pruning (early stopping condition like min leaf size, max depth)

Expected error pruning (based on statistical error estimate)

Cost-complexity pruning (penalise “complex” trees with many
nodes/leaves)
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Tree (in)stability: distributed representation

One tree:

one information about event (one leaf)
cannot really generalise to variations not covered in training set (at
most as many leaves as input size)

Many trees:

distributed representation: number of intersections of leaves
exponential in number of trees
many leaves contain the event ⇒ richer description of input pattern

Partition 1

C3=0

C1=1

C2=1

C3=0

C1=0

C2=0

C3=0

C1=0

C2=1

C3=0

C1=1

C2=1

C3=1

C1=1

C2=0

C3=1

C1=1

C2=1

C3=1

C1=0

Partition 3
Partition 2

C2=0
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Tree (in)stability solution: averaging

Build several trees and average the output

[Dietterich, 1997] 

K-fold cross-validation (good for small samples)

divide training sample L in K subsets of equal size: L =
⋃

k=1..K Lk

Train tree Tk on L − Lk , test on Lk

DT output = 1
K

∑
k=1..K Tk

Bagging, boosting, random forests, etc.
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Boosted decision trees
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BDTs in real physics cases
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Boosting: a brief history

First provable algorithm [Schapire 1990]

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation [Freund 1995]: boost by majority (combining many learners
with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID [MiniBooNe 2005]

D0 claimed first evidence for single top quark production [D0 2006]

CDF copied (2008). Both used BDT for single top observation
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Boosting: a brief history

First provable algorithm [Schapire 1990]

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation [Freund 1995]: boost by majority (combining many learners
with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID [MiniBooNe 2005]

D0 claimed first evidence for single top quark production [D0 2006]

CDF copied (2008). Both used BDT for single top observation
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Principles of boosting

What is boosting?

General method, not limited to decision trees

Hard to make a very good learner, but easy to make simple,
error-prone ones (but still better than random guessing)

Goal: combine such weak classifiers into a new more stable one, with
smaller error

Algorithm

Training sample Tk of N
events. For i th event:

weight wk
i

vector of discriminative
variables xi
class label yi = +1 for
signal, −1 for
background

Pseudocode:

Initialise T1

for k in 1..Ntree

train classifier Tk on Tk

assign weight αk to Tk

modify Tk into Tk+1

Boosted output: F (T1, ..,TNtree )
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AdaBoost [Freund&Schapire 1996]

Introduced by Freund&Schapire in 1996

Stands for adaptive boosting

Learning procedure adjusts to training data to classify it better

Many variations on the same theme for actual implementation

Most common boosting algorithm around

Usually leads to better results than without boosting
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AdaBoost algorithm

Check which events of training sample Tk are misclassified by Tk :

I(X ) = 1 if X is true, 0 otherwise
for DT output in {±1}: isMisclassifiedk(i) = I

(
yi × Tk(xi ) ≤ 0

)
or isMisclassifiedk(i) = I

(
yi × (Tk(xi )− 0.5) ≤ 0

)
in purity convention

misclassification rate:

R(Tk) = εk =

∑N
i=1 w

k
i × isMisclassifiedk(i)∑N

i=1 w
k
i

Derive tree weight αk = β × ln((1− εk)/εk)

Increase weight of misclassified events in Tk to create Tk+1:

wk
i → wk+1

i = wk
i × eαk

Train Tk+1 on Tk+1

Boosted result of event i :
T (i) =

1∑Ntree
k=1 αk

Ntree∑
k=1

αkTk(i)
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AdaBoost by example

Assume β = 1

Not-so-good classifier

Assume error rate ε = 40%

Then α = ln 1−0.4
0.4 = 0.4

Misclassified events get their weight multiplied by e0.4=1.5

⇒ next tree will have to work a bit harder on these events

Good classifier

Error rate ε = 5%

Then α = ln 1−0.05
0.05 = 2.9

Misclassified events get their weight multiplied by e2.9=19 (!!)

⇒ being failed by a good classifier means a big penalty:

must be a difficult case
next tree will have to pay much more attention to this event and try to
get it right
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AdaBoost error rate

Misclassification rate ε on training sample

Can be shown to be bound:
ε ≤

Ntree∏
k=1

2
√
εk(1− εk)

If each tree has εk 6= 0.5 (i.e. better than random guessing):

the error rate falls to zero for sufficiently large Ntree

Corollary: training data is overfitted

Overtraining?

Error rate on test sample may reach a minimum and then potentially
rise. Stop boosting at the minimum.

In principle AdaBoost must overfit training sample

In many cases in literature, no loss of performance due to overtraining

may have to do with fact that successive trees get in general smaller
and smaller weights
trees that lead to overtraining contribute very little to final DT output
on validation sample
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Overtraining estimation: good or bad?
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interpolation threshold

under-parameterised over-parameterised

“bad” overtraining (overfitting) / “good” overtraining (still underfitting)
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Training and generalisation error

Clear overtraining, but still better performance after boosting
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Cross section significance (s/
√
s + b)

More relevant than testing error

Reaches plateau

Afterwards, boosting does not hurt (just wasted CPU)

Applicable to any other figure of merit of interest for your use case
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Clues to boosting performance

First tree is best, others are minor corrections
Specialised trees do not perform well on most events ⇒ decreasing
tree weight and increasing misclassification rate
Last tree is not better evolution of first tree, but rather a pretty bad
DT that only does a good job on few cases that the other trees could
not get right
But adding trees may increase reliability of prediction: margins
explanation [Shapire&Freund 2012]
Double descent risk curve and interpolation regime [Belkin 2019]
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Gradient boosting

AdaBoost recast in a statistical framework: corresponds to minimising
an exponential loss

Generalisation: formulate boosting as numerical optimisation
problem, minimise loss function by adding trees using gradient
descent procedure

Build imperfect model Fk at step k (sometimes Fk(x) 6= y)

Improve model: Fk+1(x) = Fk(x) + hk(x) = y , or
residual hk(x) = y − Fk(x)

Train new classifier on residual

Example: mean squared error loss function
LMSE(x , y) = 1

2 (y − Fk(x))2

minimising loss J =
∑

i LMSE(xi , yi ) leads to ∂J
∂Fk (xi )

= Fk(xi )− yi

⇒ residual as negative gradient: hk(xi ) = yi − Fk(xi ) = − ∂J
∂Fk (xi )

Generalised to any differentiable loss function
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Performance examples

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1

9 (Boosted) Decision trees
Decision trees
Limitations
Boosted decision trees
Performance examples

First is best
XOR problem
Circular correlation
Many small trees or fewer large
trees?

BDTs in real physics cases
Software and example code
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Concrete example

Using ROOT and TMVA with basic code to make examples (more
later)
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Concrete example
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Concrete example

Specialised trees
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Concrete example
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Concrete example: XOR
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Concrete example: XOR
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Concrete example: XOR with 100 events

Small statistics

Single tree not so good

BDT very good: high
performance discriminant from
combination of weak classifiers
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Circular correlation

Using TMVA and create circ macro from
$ROOTSYS/tutorials/tmva/createData.C to generate dataset

Plots: TMVA::TMVAGui("filename");
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Circular correlation

Boosting longer (TMVA: NTrees)

Compare performance of single DT and BDT with more and more
trees (5 to 400)

All other parameters at TMVA default (would be 400 trees)
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Single (small) DT: not
so good

More trees ⇒ improve
performance until
saturation
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Decision contours

var0
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Note: max tree depth = 3

Single (small) DT: not so
good. Note: a larger tree
would solve this problem

More trees ⇒ improve
performance (less step-like,
closer to optimal
separation) until saturation

Largest BDTs: wiggle a
little around the contour
⇒ picked up features of
training sample, that is,
overtraining
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Training/testing output

Better shape with more trees: quasi-continuous

Overtraining because of disagreement between training and testing?
Let’s see
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Performance in optimal significance

Best significance actually obtained with last BDT, 400 trees!

But to be fair, equivalent performance with 10 trees already

Less “stepped” output desirable? ⇒ maybe 50 is reasonable
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Performance in optimal significance

Best significance actually obtained with last BDT, 400 trees!

But to be fair, equivalent performance with 10 trees already
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Control plots

Boosting weight decreases fast and stabilises

First trees have small error fractions, then increases towards 0.5
(random guess)

⇒ confirms that best trees are first ones, others are small corrections

boost weight
0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

450

AdaBooost weight distribution

#tree
0 50 100 150 200 250 300 350 400

b
o

o
st

 w
ei

g
h

t

0

2

4

6

8

10

Boost weights vs tree

#tree
0 50 100 150 200 250 300 350 400

er
ro

r 
fr

ac
ti

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

error fraction vs tree number

#tree
0 50 100 150 200 250 300 350 400

#t
re

e 
n

o
d

es

0

2

4

6

8

10

12

14

16

18

Nodes before/after pruning

boost weight
0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

450

AdaBooost weight distribution

#tree
0 50 100 150 200 250 300 350 400

b
o

o
st

 w
ei

g
h

t

0

2

4

6

8

10

Boost weights vs tree

#tree
0 50 100 150 200 250 300 350 400

er
ro

r 
fr

ac
ti

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

error fraction vs tree number

#tree
0 50 100 150 200 250 300 350 400

#t
re

e 
n

o
d

es

0

2

4

6

8

10

12

14

16

18

Nodes before/after pruning

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 83/183



Circular correlation

Separation criterion for node splitting (TMVA: SeparationType)

Compare performance of Gini, entropy, misclassification error, s√
s+b

All other parameters at TMVA default

Very similar performance (even
zooming on corner)

Small degradation (in this
particular case) for s√

s+b
: only

criterion that does not respect
good properties of impurity
measure (see earlier: maximal
for equal mix of signal and bkg,
symmetric in psig and pbkg ,
minimal for node with either
signal only or bkg only, strictly
concave)
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Circular correlation

Performance in optimal significance

Confirms previous page: very similar performance, worse for BDT
optimised with significance!
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Many small trees or fewer large trees?

Using same create circ macro but generating larger dataset to
avoid stats limitations

20 or 400 trees; minimum leaf size: 10 or 500 events (MinNodeSize)

Maximum depth (max # of cuts to reach leaf): 3 or 20 (MaxDepth)

Overall: very comparable performance. Depends on use case.
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Other boosting algorithms

ε-Boost (shrinkage)

reweight misclassified events by a fixed e2ε factor

T (i) =
∑Ntree

k=1 εTk(i)

ε-LogitBoost

reweight misclassified events by logistic function e−yi Tk (xi )

1+e−yi Tk (xi )

T (i) =
∑Ntree

k=1 εTk(i)

Real AdaBoost

DT output is Tk(i) = 0.5× ln pk (i)
1−pk (i) where pk(i) is purity of leaf on

which event i falls

reweight events by e−yiTk (i)

T (i) =
∑Ntree

k=1 Tk(i)

ε-HingeBoost, LogitBoost, Gentle AdaBoost, etc.
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Other averaging techniques

Bagging (Bootstrap aggregating) [Breiman 1996]

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Applicable to other techniques than DT

tends to produce more stable and better classifier

Random forests [Breiman 2001]

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Often as good as boosting
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BDTs in real physics cases

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1
9 (Boosted) Decision trees

Decision trees
Limitations
Boosted decision trees
Performance examples
BDTs in real physics cases

Single top search at D0
LHC examples
BDT systematics

Software and example code
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Single top production evidence at D0 (2006)

Three multivariate techniques:
BDT, Matrix Elements, BNN

Most sensitive: BDT

σs+t = 4.9± 1.4 pb
p-value = 0.035% (3.4σ)

SM compatibility: 11% (1.3σ)

σs = 1.0± 0.9 pb
σt = 4.2+1.8

−1.4 pb

Phys. Rev. D78, 012005 (2008)
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Decision trees — 49 input variables

Object Kinematics Event Kinematics
pT (jet1) Aplanarity(alljets,W )
pT (jet2) M(W ,best1) (“best” top mass)
pT (jet3) M(W ,tag1) (“b-tagged” top mass)
pT (jet4) HT (alljets)
pT (best1) HT (alljets−best1)
pT (notbest1) HT (alljets−tag1)
pT (notbest2) HT (alljets,W )
pT (tag1) HT (jet1,jet2)
pT (untag1) HT (jet1,jet2,W )
pT (untag2) M(alljets)

M(alljets−best1)
Angular Correlations M(alljets−tag1)

∆R(jet1,jet2) M(jet1,jet2)
cos(best1,lepton)besttop M(jet1,jet2,W )
cos(best1,notbest1)besttop MT (jet1,jet2)
cos(tag1,alljets)alljets MT (W )
cos(tag1,lepton)btaggedtop Missing ET
cos(jet1,alljets)alljets pT (alljets−best1)
cos(jet1,lepton)btaggedtop pT (alljets−tag1)
cos(jet2,alljets)alljets pT (jet1,jet2)
cos(jet2,lepton)btaggedtop Q(lepton)×η(untag1)

cos(lepton,Q(lepton)×z)besttop

√
ŝ

cos(leptonbesttop,besttopCMframe) Sphericity(alljets,W )
cos(leptonbtaggedtop,btaggedtopCMframe)
cos(notbest,alljets)alljets
cos(notbest,lepton)besttop
cos(untag1,alljets)alljets
cos(untag1,lepton)btaggedtop

Adding variables
did not degrade
performance

Tested shorter
lists, lost some
sensitivity

Same list used for
all channels

Best theoretical
variable:
HT (alljets,W ).
But detector not
perfect ⇒ capture
the essence from
several variations
usually helps
“dumb” MVA
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Cross-check samples

Validate method on data in no-signal region

“W+jets”: = 2 jets,
HT (lepton,Emiss

T ,alljets) < 175 GeV

“ttbar”: = 4 jets,
HT (lepton,Emiss

T ,alljets) > 300 GeV

Good agreement
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Boosted decision tree event characteristics

DT < 0.3 DT > 0.55 DT > 0.65

High BDT region = shows masses of real t and W ⇒ expected
Low BDT region = background-like ⇒ expected

Above does NOT tell analysis is ok, but not seeing this could be a sign of a
problem
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Comparison for D0 single top evidence

ayesian NN, ME 

Cannot know a priori which method
will work best

⇒ Need to experiment with different
techniques

Power curve
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BDT in HEP

ATLAS tau identification

Now used both
offline and online

Systematics:
propagate various
detector/theory
effects to BDT
output and
measure variation

ATLAS tt̄tt̄ production evidence

Eur. Phys. J. C 80 (2020) 1085 arXiv:2007.14858 [hep-ex]

BDT output used in final fit to measure
cross section

Constraints on systematic uncertainties
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BDT in HEP: ATLAS tt̄ → e/µ + τ+jets

Phys.Lett. B717 (2012) 89-108

BDT for tau ID: one to reject
electrons, one against jets

Fit BDT output to get tau
contribution in data
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BDT in HEP: CMS H → γγ result

CMS-PAS-HIG-13-001

Hard to use more BDT in an analysis:

vertex selected with BDT

2nd vertex BDT to estimate probability to be within 1cm of
interaction point

photon ID with BDT

photon energy corrected with BDT regression

event-by-event energy uncertainty from another BDT

several BDT to extract signal in different categories
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BDT in HEP: ATLAS b-tagging in Run 2

ATL-PHYS-PUB-2015-022 Eur. Phys. J. C 79 (2019) 970 arXiv:1907.05120 [hep-ex]

Run 1 MV1c: NN trained from output of other taggers

Run 2 MV2c20: BDT using feature variables of underlying algorithms
(impact parameter, secondary vertices) and pT, η of jets

Run 2: introduced IBL (new innermost pixel layer)
⇒ explains part of the performance gain, but not all

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

MV2D

4−10

3−10

2−10

1−10

1

10

F
ra

c
ti
o

n
 o

f 
je

ts
 /

 0
.0

5

t = 13 TeV, ts

ATLAS  Simulation

bjets

cjets

Lightflavour jets

Yann Coadou (CPPM) — Machine learning ESIPAP’21, Online, 27 Jan 2021 98/183

http://cdsweb.cern.ch/record/2037697
http://dx.doi.org/10.1140/epjc/s10052-019-7450-8
http://arxiv.org/abs/1907.05120


BDT in HEP: final state reconstruction

tt̄H(bb̄) reconstruction

Match jets and partons in
high-multiplicity final state

BDT trained on all combinations

New inputs to classification BDT

Access to Higgs pT, origin of b-jets

Phys. Rev. D 97, 072016 (2018)
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BDT and systematics

No particular rule

BDT output can be considered as any other cut variable (just more
powerful). Evaluate systematics by:

varying cut value
retraining
calibrating, etc.

Most common (and appropriate, I think): propagate other
uncertainties (detector, theory, etc.) up to BDT ouput and check how
much the analysis is affected

More and more common: profiling.
Watch out:

BDT output powerful
signal region (high BDT output) probably low statistics
⇒ potential recipe for disaster if modelling is not good

May require extra systematics, not so much on technique itself, but
because it probes specific corners of phase space and/or wider
parameter space (usually loosening pre-BDT selection cuts)
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BDT and systematics
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BDT and systematics
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(Boosted decision tree) software

Go for a fully integrated solution

use different multivariate techniques easily
spend your time on understanding your data and model

Examples:

TMVA (Toolkit for MultiVariate Analysis)
Integrated in ROOT, complete manual https://root.cern/tmva

Example code in backup

scikit-learn (python) http://scikit-learn.org

Dedicated to BDT:

XGBoost (popular in HEP) arXiv:1603.02754 https://github.com/dmlc/xgboost

(note: cannot handle negative weights)
LightGBM (Microsoft) https://lightgbm.readthedocs.io

CatBoost (Yandex) https://catboost.ai/
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Decision trees are not dead! e.g. NeurIPS2019

PIDForest: Anomaly Detection via Partial Identification NeurIPS

A Debiased MDI (Mean Decrease of Impurity) Feature Importance
Measure for Random Forests NeurIPS

MonoForest framework for tree ensemble analysis NeurIPS

Faster Boosting with Smaller Memory (Yoav S Freund) NeurIPS

Minimal Variance Sampling in Stochastic Gradient Boosting NeurIPS

Regularized Gradient Boosting NeurIPS

Partitioning Structure Learning for Segmented Linear Regression
Trees NeurIPS

Random Tessellation Forests NeurIPS

Optimal Sparse Decision Trees NeurIPS

Provably robust boosted decision stumps and trees against adversarial
attacks NeurIPS

Robustness Verification of Tree-based Models NeurIPS
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Beyond the standard slides

Backup
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Pruning a tree I

Pre-pruning

Stop tree growth during building phase

Already seen: minimum leaf size, minimum separation improvement,
maximum depth, etc.

Careful: early stopping condition may prevent from discovering
further useful splitting

Expected error pruning

Grow full tree

When result from children not significantly different from result of
parent, prune children

Can measure statistical error estimate with binomial error√
p(1− p)/N for node with purity p and N training events

No need for testing sample

Known to be “too aggressive”
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Pruning a tree II: cost-complexity pruning

Idea: penalise “complex” trees (many nodes/leaves) and find
compromise between good fit to training data (larger tree) and good
generalisation properties (smaller tree)

With misclassification rate R(T ) of subtree T (with NT nodes) of
fully grown tree Tmax :

cost complexity Rα(T ) = R(T ) + αNT

α = complexity parameter

Minimise Rα(T ):

small α: pick Tmax

large α: keep root node only, Tmax fully pruned

First-pass pruning, for terminal nodes tL, tR from split of t:

by construction R(t) ≥ R(tL) + R(tR)
if R(t) = R(tL) + R(tR) prune off tL and tR
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Pruning a tree III: cost-complexity pruning

For node t and subtree Tt :

if t non-terminal, R(t) > R(Tt) by construction
Rα({t}) = Rα(t) = R(t) + α (NT = 1)
if Rα(Tt) < Rα(t) then branch has smaller cost-complexity than single
node and should be kept
at critical α = ρt , node is preferable
to find ρt , solve Rρt (Tt) = Rρt (t), or: ρt =

R(t)− R(Tt)

NT − 1

node with smallest ρt is weakest link and gets pruned
apply recursively till you get to the root node

This generates sequence of decreasing cost-complexity subtrees

Compute their true misclassification rate on validation sample:

will first decrease with cost-complexity
then goes through a minimum and increases again
pick this tree at the minimum as the best pruned tree

Note: best pruned tree may not be optimal in a forest
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Introduction to TMVA (ROOT v6.20.06)

TMVA: Toolkit for MultiVariate Analysis
https://root.cern/tmva https://github.com/root-project/root/tree/master/tmva

Written by physicists

In C++ (also python API), integrated in ROOT

Quite complete manual

Includes many different multivariate/machine learning techniques

To compile, add appropriate header files in your code (e.g., #include
"TMVA/Factory.h") and this to your compiler command line:
‘root-config --cflags --libs‘ -lTMVA

More complete examples of code: $ROOTSYS/tutorials/tmva
createData.C macro to make example datasets
classification and regression macros
also includes Keras examples (deep learning)

Sometimes useful performance measures (more in these headers):
#include "TMVA/ROCCalc.h"

TMVA::ROCCalc(TH1* S,TH1* B).GetROCIntegral();

#include "TMVA/Tools.h"

TMVA::gTools().GetSeparation(TH1* S,TH1* B);
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Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");
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Training with TMVA (Train.C)
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Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable( "var0", &var0 );

reader->AddVariable( "var1", &var1 );

reader->BookMVA( "My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA( "Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial
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Compiling TMVA with C++

To make code compilable (and MUCH faster)

Need ROOT and TMVA corresponding header files
e.g., for Train.C:

#include "TFile.h"

#include "TTree.h"

#include "TMVA/Factory.h"

#include "TMVA/DataLoader.h"

#include "TMVA/TMVAGui.h"

Need a “main” function
int main() {

Train();

return 0;

}

Compilation:
g++ Train.C ‘root-config --cflags --libs‘ -lTMVA -lTMVAGui -o TMVATrainer

Train.C: file to compile
TMVATrainer: name of executable
-lTMVAGui: just because of TMVA::TMVAGui("output.root");
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TMVA: training refinements

Common technique: train on even event numbers, test on odd event
numbers (and vice versa)

Can also think of more than two-fold

Achieve in TMVA by replacing:

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

with:

TString trainString = "(eventNumber % 2 == 0)";

TString testString = "!"+trainString;

dataloader->AddTree(sig, "Signal", sigWeight, trainString.Data(), "Training");

dataloader->AddTree(sig, "Signal", sigWeight, testString.Data(), "Test");

dataloader->AddTree(bkg, "Background", bkgWeight, trainString.Data(), "Training");

dataloader->AddTree(bkg, "Background", bkgWeight, testString.Data(), "Test");

Use individual event weights:

string eventWeight = "TMath::Abs(eventWeight)"; //Compute event weight

dataloader->SetSignalWeightExpression(eventWeight);

dataloader->SetBackgroundWeightExpression(eventWeight); //Can differ
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