ESIPAP 2021

Simulation of gas-based detectors, introduction
course 1 , laboratory 4
Friday February $5^{\text {th }} 14 \mathrm{~h} 00-14 \mathrm{~h} 30$
video-only

Gas-based detectors, a brief history

Geiger counter

Detects radiation by discharge;
$>$ can count α, β and γ particles (at low rates ...);

- no tracking capability.

1908: Ernest Rutherford and Hans Geiger

- 1928: Hans Geiger and Walther Müller

Hans Geiger
(1882-1945)

Walt(h)er Müller (1905-1979)

A Geiger-Muller counter built in 1939 and used in the 1947-1950 for cosmic ray studies in balloons and on board B29 aircraft by Robert Millikan et al.

Made of copper, 30 cm long

MWPC

- First gaseous tracking device
- 1968: Georges Charpak

One of the NA60 muon chambers

MSGC: an early MPGD

- Built using solidstate techniques;
- good resolution;
- poor resistance to high rates.
- 1988: Anton Oed

Micromégas

- Fast, rate tolerant tracking device.
- 1994: Yannis Giomataris and Georges Charpak.

Yannis Giomataris

Wire diameter: $18 \mu \mathrm{~m}$, Pitch: $63 \mu \mathrm{~m}$, Gap: $192 \mu \mathrm{~m}$
[Purba Bhattacharya et al., 10.1016/j.nima.2013.07.086; ILC NewsLine]

GEM

- Originally, a "pre-amplifier". - 1996: Fabio Sauli

A few electrons enter here

Fabio Sauli

Gossip

- The "electronic bubble chamber".

Harry van der Graaf (r)

δ-electrons made visible in $\mathrm{He} / \mathrm{iC}_{4} \mathrm{H}_{10}$, using a modified MediPix, ~ 2004.

How they work

- Gas-based detectors all work according to much the same principles:
- a charged particle passing through the gas ionises a few gas molecules;
- the electric field in the gas volume transports the ionisation electrons and provokes multiplication;
- the movement of electrons and ions leads to induced currents in electrodes;
- the signals are processed and recorded.

At the $100 \mu \mathrm{~m}$ scale

- Example:
- CSC-like structure, $-\mathrm{Ar} 80 \% \mathrm{CO}_{2} 20 \%$, $\Rightarrow 10 \mathrm{GeV} \mu$.
\rightarrow Electron are shown every 100 collisions, but have been tracked rigorously.
\rightarrow Ions are not shown.

Ionisation

1896: Ionisation by radiation

\rightarrow Early in the study of radioactivity, ionisation by radiation was recognised:

> " Becquerel discovered in 1896 the special radiating properties of uranium and its compounds. Uranium emits very weak rays which leave an impression on photographic plates. These rays pass through black paper and metals; they make air electrically conductive.

[Pierre Curie, Nobel Lecture, June 6 ${ }^{\text {th }}$ 1905]
"A sphere of charged uranium, which discharges spontaneously in the air under the influence of its own radiation, retains its charge in an absolute vacuum. The exchanges of electrical charges that take place between charged bodies under the influence of the new rays, are the result of a special conductivity imparted to the surrounding gases, a conductivity that persists for several moments after the radiation has ceased to act."
[Antoine Henri Becquerel, Nobel Lecture, December $11^{\text {th }}$ 1903]

Virtual photon exchange

Core formulae PAI model

- Key: photo-absorption cross section $\sigma_{\gamma}(E)$ Wade Allison

$$
\frac{\beta^{2} \pi}{\alpha} \frac{\mathrm{~d} \sigma}{\mathrm{~d} E}=\frac{\sigma_{\gamma}(E)}{E} \log \left(\frac{1}{\sqrt{\left(1-\beta^{2} \epsilon_{1}\right)^{2}+\beta^{4} \epsilon_{2}^{2}}}\right)+\text { Relativistic rise }
$$

$\begin{aligned} & \text { Cross section to transfer } \\ & \text { an energy } E \text { in a single } \\ & \text { collision of an incident }\end{aligned} \frac{1}{N \hbar c}\left(\beta^{2}-\frac{\epsilon_{1}}{|\epsilon|^{2}}\right) \theta+$
collision of an incident

$$
\frac{\sigma_{\gamma}(E)}{E} \log \left(\frac{2 m_{e} c^{2} \beta^{2}}{E}\right)+
$$

Черенков radiation

Resonance region

$$
\frac{1}{E^{2}} \int_{0}^{E} \sigma_{\gamma}\left(E_{1}\right) d E_{1}
$$

Rutherford scattering

With: $\quad \epsilon_{2}(E)=\frac{N_{\mathrm{e}} \hbar c}{E Z} \sigma_{\gamma}(E)$

$$
\epsilon_{1}(E)=1+\frac{2}{\pi} \mathrm{P} \int_{0}^{\infty} \frac{x \epsilon_{2}(x)}{x^{2}-E^{2}} \mathrm{~d} x
$$

$$
\theta=\arg \left(1-\epsilon_{1} \beta^{2}+i \epsilon_{2} \beta^{2}\right)=\frac{\pi}{2}-\arctan \frac{1-\epsilon_{1} \beta^{2}}{\epsilon_{2} \beta^{2}}
$$

Photo-absorption in Ar (Heed)

Igor Smirnov

- Argon has 3 shells, hence 3 groups of lines:

Importance of the PAI model terms

- All electron orbitals (shells) participate:
\rightarrow outer shells: frequent interactions, few electrons; inner shells: few interactions, many electrons.
- All terms in the formula are important.

Electric fields

1600: "Electric force"

1544: William Gilbert born in Colchester
1600: De magnete, magneticisque corporibus, et de magno magnete tellure.

- Concluded that the Earth is a magnet; and he is credited with the first use of the term "electric force":
> vim illam electricam nobis placet appellare quæab humore prouenit
- 1601: Physician to Elizabeth I and James I.
[Guilielmi Gilberti, De magnete ..., excudebat Petrus Short anno MDC, Londini, courtesy Universidad Complutense de Madrid and Google books]

Field calculation techniques

- Closed expressions, "analytic method": almost all 2d structures of wires, planes + periodicities;
- dielectrics and space/surface charge are laborious;
- fast and precise, if applicable.
- Finite element method:
- 2d and 3d structures, with or without dielectrics; several major intrinsic shortcomings.
- Integral equations or Boundary element methods:
- equally comprehensive as FEM, without the intrinsic flaws;
- technically challenging and emerging;
- consumes more CPU time than FEM, but catching up.
- Finite differences:
∇ used for iterative, time-dependent calculations.

1814: Cauchy-Riemann equations

- Express the existence of a derivative of a complex analytic function $f=u+\mathrm{i} v$:

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}+\mathrm{i} \frac{\partial v}{\partial x} \\
& =\frac{\partial f}{\partial \mathrm{i} y}=-\mathrm{i} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
\end{aligned}
$$

- implies that the real part u is harmonic:

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x}=-\frac{\partial^{2} u}{\partial y^{2}} \quad \rightarrow \quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\nabla^{2} u=0
$$

Reference: A.L. Cauchy, Sur les intégrales définies (1814). This mémoire was read in 1814, but only submitted to the printer in 1825. Riemann was born a year later.

Aircraft wings - finite elements

- "Stiffness and Deflection Analysis of Complex Structures", a study in the use of the finite element technique (then called "direct stiffness method") for aircraft wing design.

[M.J. Turner, R.W. Clough, H.C. Martin and L.J. Topp, Stiffness and Deflection Analysis of Complex Structures, J. Aero. Sc. 23 (1956), 805-824. MJT \& LJT with Boeing.]

neBEM's Green's functions

- neBEM has only 3 Green's functions:
- rectangle;
- right-angled triangle;
$>$ line segment.
- The Green's functions have been
computed by integrating a uniform charge distribution across the element.
- This avoids the nodal charges found in several BEM methods. But the joints between elements still have a jump.

Boundary element

Electron transport

Mean free path in argon

- Literature will tell you:
$-\mathrm{e}^{-}$cross section Ar atom
atoms per unit volume: $\quad n_{0} \approx 2.710^{19} \quad$ atoms $/ \mathrm{cm}^{3}$
- Mean free path for an electron ?
- An electron hits all atoms of which the centre is less than a cross section σ radius from its path;
\rightarrow over a distance L, the electron hits $n_{0} \sigma L$ atoms;
\rightarrow mean free path $=$ distance over which it hits 1 atom;

$$
\lambda_{\mathrm{e}}=1 /\left(\sigma n_{0}\right) \approx 2.5 \mu \mathrm{~m}
$$

much larger than:
$>4 \mathrm{~nm}$
$>140-600 \mathrm{pm}$
distance between atoms, and typical gas molecule diameters.

Drift velocity in electric fields

- Imagine that an electron stops every time it collides with a gas molecule and then continues along E.
- To cover a distance λ_{e} it will need a time t :

$$
\frac{1}{2} \frac{q E}{m_{\mathrm{e}}} t^{2}=\lambda_{\mathrm{e}}, \quad t=\sqrt{\frac{2 \lambda_{\mathrm{e}} m_{\mathrm{e}}}{q E}}, \quad \bar{v}=\frac{\lambda_{\mathrm{e}}}{t}=\sqrt{\frac{\lambda_{\mathrm{e}} q E}{2 m_{\mathrm{e}}}}
$$

- which gives:

$$
\bar{v} \approx 13 \mathrm{~cm} / \mu \mathrm{s} \text { for } E=1 \mathrm{kV} / \mathrm{cm}
$$

Drift velocity in argon

Compare with a Magboltz calculation for pure argon:
$-\sqrt{ } E$ dependence is not too far off, although linearly proportional is more common at low field,

BUT

- the velocity is vastly overestimated! Magboltz finds a velocity that is 30 times smaller ...

WHY ?

Adding CO_{2}

$-\mathrm{CO}_{2}$ makes the gas faster, dramatically.

- Additives like CO_{2} are called "quenchers" or admixtures.

Drift velocities calculated by Magboltz for $\mathrm{Ar} / \mathrm{CO}_{2}$ at 3 bar.
(Note where the arrow is !)

CO_{2} - vibration modes

$\rightarrow \mathrm{CO}_{2}$ is linear:

- $\mathrm{O}-\mathrm{C}-\mathrm{O}$
- Vibration modes are numbered V(ijk)
> i : symmetric,
$>j$: bending,
>k: anti-symmetric.

Vibrations V(ijk)

Electrons in $\mathrm{Ar} / \mathrm{CO}_{2}$ at $E=1 \mathrm{kV} / \mathrm{cm}$

Starting point

Electrons in $\mathrm{Ar} / \mathrm{CO}_{2}$ at $E=1 \mathrm{kV} / \mathrm{cm}$

Starting point

Attachment

- Some quencher gases can attach electrons.
- Energy-momentum conservation:
- 3-body interaction or dissociation.
- Examples:
$-\mathrm{O}_{2}$: mostly 3-body O_{2}^{-}and at higher \in 2-body dissociative;
$\rightarrow \mathrm{H}_{2} \mathrm{O}:\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$ has positive electron affinity, $\mathrm{H}_{2} \mathrm{O}$ probably not;
$\rightarrow \mathrm{CF}_{4}$: mostly dissociative $\mathrm{F}^{-}+\mathrm{CF}_{3}, \mathrm{~F}+\mathrm{CF}_{3}{ }^{-}$(below 10 eV);
$>\mathrm{SF}_{6}: \mathrm{SF}_{6}^{-*}<0.1 \mathrm{eV}$, then $\mathrm{F}^{-}+\mathrm{SF}_{\mathrm{n}}{ }^{-}(\mathrm{n}=3,4,5)$
CS_{2} : negative ion TPC;
$\rightarrow \mathrm{CO}_{2}: \mathrm{O}^{-},\left[\mathrm{CO}_{2}\right]_{\mathrm{n}}^{-}$but no $\mathrm{CO}_{2}^{-}(4 \mathrm{eV}$ and 8.2 eV$)$.

Attachment in CO_{2}

$\rightarrow \mathrm{CO}_{2}$ is a linear molecule:

[Source: presumably SS Zumdahl, Chemistry (1983) DC Heath and Company.]

1962: Numerical e- transport

Iterative approach, allowing for inelastic cross section terms:
\rightarrow educated guess of cross sections (elastic \& inelastic); Δ numerically solve the Boltzmann equation (no moments); $>$ compare calculated and measured mobility and diffusion; - adjust cross sections.
"... more than 50,000 transistors plus extremely fast magnetic core storage. The new system can simultaneously read and write electronically at the rate of $3,000,000$ bits of information a second, when eight data channels are in use. In 2.18 millionths of a second, it can locate and make ready for use any of 32,768 data or instruction numbers (each of 10 digits) in the magnetic core storage. The 7090 can perform any of the following operations in one second: 229,000 additions or subtractions, 39,500 multiplications, or 32,700 divisions. " (IBM 7090 documentation)
[L.S. Frost and A.V. Phelps, Rotational Excitation and Momentum Transfer Cross Sections for Electrons in H_{2} and N_{2} from Transport Coefficients, Phys. Rev. 127 (1962) 1621-1633.]

Magboltz: microscopic e^{-}transport

- A large number of cross sections for 60 molecules...
Δ Numerous organic gases, additives, e.g. CO_{2} :
- elastic scattering,
- 44 inelastic cross sections (5 vibrations and 30 rotations + super-elastic and 9 polyads),
- attachment,
>67 excited states and
- 11 ionisations.
- noble gases (He, Ne, Ar, Kr, Xe):
$>$ elastic scattering,
>44 excited states and
7 ionisations.

LXcat

\rightarrow LXcat (pronounced elecscat) is an open-access website for collecting, displaying, and downloading ELECtron SCATtering cross sections and swarm parameters (mobility, diffusion coefficient, reaction rates, etc.) required for modeling low temperature plasmas. [...]"
[http://www.lxcat.laplace.univ-tlse.fr/]

Gas gain

1901: Gas multiplication

\author{

- John Townsend:
}

Let a force X be applied to N_{0} negative ions in a gas at pressure p and temperature t. Let N be the total number of negative ions after the N_{0} ions have travelled a distance a. The new negative ions travel with the same velocity as the original N_{n} ions, so that all the negative ions will be found together during the motion. The number of negative ions produced by N ions travelling through a distance $d x$ will be $\alpha \mathrm{N} d x$; where α is a constant depending on X, p, and t.

Then

$$
d \mathrm{~N}=\alpha \mathrm{N} d x
$$

Hence

$$
\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{a x}
$$

[J.S. Townsend, "The conductivity produced in gases by the motion of negatively charged ions", Phil. Mag. 6-1 (1901) 198-227. If access to the Philosophical Magazine is restricted, then consult a German-language abstract at http://jfm.sub.uni-goettingen.de/.]

$\alpha\left(\mathrm{Ar}-\mathrm{CO}_{2}\right)$

Does this reproduce the measurements ?

$-\mathrm{Ar}-\mathrm{CH}_{4}$

$-\mathrm{Ar}-\mathrm{CO}_{2}$

Level diagram argon and admixtures

Determining the Penning parameter

- The Penning transfer rate r_{p} is measured by finding, the fraction of the excitations to be added to α so that the measured gain is reproduced:

$$
G=\exp \int \alpha\left|1+r_{\mathrm{P}} \frac{v_{\text {exc }}}{v_{\text {ion }}}\right|
$$

- r_{P} depends on gas choice, quencher fraction and density.
- Ideally, one would like to determine a separate r_{p} for each excitation, but for now, we do not have the data for that.

Data covers 5 orders of magnitude!

- Current reference is taken at the ionisation level.
\rightarrow Main source of error: $\sim 5 \%$.

$\mathrm{Ar}-\mathrm{CO}_{2}$ transfer rates

Loss of excitation

- Penning parameter fits with data from Tadeusz Kowalski et al. 1992 and 2013.
- At $p=1070 \mathrm{hPa}$.
[10.1016/0168-9002(92)90305-N, 10.1016/j.nima.2014.09.061]

Gain calculations

Total gain vs effective gain in a GEM

Total gain: $\mathrm{G}_{\text {tot }}$

- total number of electrons produced by the average avalanche
\rightarrow Effective gain: $\mathrm{G}_{\text {eff }}$
$>$ number of electrons produced by the average avalanche and that reach the GEM read-out structure
- the other electrons land on the PI, modifying the field, or on the bottom GEM electrode.

Varying the permittivity

- Reference geometry:
$>$ inner diam $d=50 \mu \mathrm{~m}$, outer $\operatorname{diam} D=70 \mu \mathrm{~m}$, pitch $T=140 \mu \mathrm{~m}$, Material reference: permittivity $\varepsilon=3.9$.
- Permittivity affects the gain at low ε.

Varying the pitch

- Reference geometry:
$>$ inner diam $d=50 \mu \mathrm{~m}$, outer $\operatorname{diam} D=70 \mu \mathrm{~m}$, pitch $\quad T=140 \mu \mathrm{~m}$, Material reference: permittivity $\varepsilon=3.9$.

Usual pitch maximises the gain.

Varying the inner hole diameter

- Reference geometry:
$>$ inner diam $d=50 \mu \mathrm{~m}$, outer $\operatorname{diam} D=70 \mu \mathrm{~m}$, pitch $T=140 \mu \mathrm{~m}$,
\rightarrow Material reference: permittivity $\varepsilon=3.9$.
- At small d, electrons hit the PI near the tip;
$-\mathrm{G}_{\text {eff }}$ increases with d up to cylindrical, then flattens; over-etching does cause $\mathrm{G}_{\text {tot }}$ to keep increasing.

Ion Transport

Ion transport

- In this laboratory, we look into electron transport, but not into ion transport.
- We do this because electrons are responsible for the signals in GEMs.
- Beware though that the signals in
- wire chambers,
\rightarrow Micromegas
- and others,
- are generated by ion movement
\rightarrow Ion transport is a rich field which we can discuss in a small group if desired: ion reactions, cluster formation ...

Next

- Josh Renner has prepared exercises to simulate a LEM.
- Beware ... GEM and LEM look similar at first sight, but there are important differences !

