

Interactions of Particles/Radiation with Matter

ESIPAP : European School in Instrumentation for Particle and Astroparticle Physics

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Non-exhaustive list of « Particles/Radiation » and « Matter »

PARTICLES	RADIATION
• ⁴ ₂ He	lpha radiation
• e [±]	β^{\pm} radiation
•γ	e.m, X, γ radiation
• μ, γ, e [±] , π, ν ,p	cosmic radiation

PARTICLES <--> RADIATION

2 aspects of the same « entity »

De Broglie relation

$$L = h/p$$

(h = Planck constant)

(medical app.)

MATTER

- detectors
- humain tissus/body
- electronic circuits
- Louvre paintings
- beauty cream, potatos, ...

@2000 How Stuff Works

Motivation

- The interaction between particles & matter is at the base of several human activities
- Plenty of applications not only in research and not only in Particle & Astroparticle

Very important for particle detection !

In order to detect a particle, the latter must interact with the material of the detector, and produce 'a (detectable) signal'

Brief outline and bibliography

Two lectures + two tutorials

- Interaction of charged particles
 « heavy » (m_{Pa} >>m_e)
 « light » (m_{Pa} ~ m_e)
- Interaction of neutral particles

Photons Neutral Hadrons: n, π^0 , ...

- Radiation detection and measurement, G.F. Knoll, J. Wiley & Sons
- Experimental Techniques in High Energy Nuclear and Particle Physics, T. Ferbel, World Scientific
- Introduction to experimental particle physics, R. Fernow, Cambridge University Press
- Techniques for Nuclear and Particle Physics Experiments , W.R. Leo, Springer-Verlag
- Detectors for Particle radiation, K. Kleinknecht, Cambridge University Press
- Particle detectors, C. Grupen, Cambridge monographs on particle physics
- Principles of Radiation Interaction in Matter and Detection, C. Leroy, P.G. Rancoita,

World Scientific

- Nuclei and particles, Emilio Segré, W.A. Benjamin
- High-Energy Particles, Bruno Rossi, Prentice-Hall

"The classic "

Also: Particle Data Group

http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf

For 'professionals'(*): GEANT4 (for GEometry ANd Tracking) (Platform for the simulation of the passage of the particles through the matter Using Monte Carlo simulation, Open software) <u>https://www.sciencedirect.com/science/article/pii/S0168900203013688</u>

My slides have been inspired by :

Hans Christian Schultz-Coulon's lectures

Johann Collot @ ESIPAP 2014

(*) more exists:

Fluka

Garfield (simulation gas detectors)

Interaction Cross Section (σ) definition

Cross section (σ**)**

Mean free path λ ^(*)

for the corresponding process (see later)

Examples: detection of photons(γ), $\pi^{0}(2\gamma)$, neutrons(n), neutrinos(v)

Signals are induced by e.m. interactions of charged particles in detectors

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Useful relations of relativistic Kinematics and HEP units

•
$$\overrightarrow{p} = m_0 \gamma \overrightarrow{v}$$
 $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ $\beta = v/c$
• Kinetic energy $E_k = (\gamma - 1) m_0 c^2$
• Kinetic energy $E = \sqrt{(pc)^2 + (m_0 c^2)^2}$
• Total energy $E = V_k (pc)^2 + (m_0 c^2)^2$
• Total energy $E = E_k + m_0 c^2 = m_0 \gamma c^2 = m c^2$ $\gamma = E/(m_0 c^2)$
 $E = m c^2$ « equivalence mass & energy »
Units :
 $[E] = eV$ $[m] = eV/c^2$ $[p] = eV/c$
« Natural units » $h = 1$
 $c = 1$ $[c] = \frac{[1]}{[t]}$ $[1] = [t]$ See Marco Delmastro
 $lectures$

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Outline: main interaction processes

Neutral particle interactions

- Photons
- High energy neutral hadrons with > $\tau \sim 10^{-10}$ s (n, K⁰, ..) :
- Moderate/low energy neutrons

Interactions of photons (y)

 γ : particles with $m_{\gamma} = 0$, $q_{\gamma} = 0$, $J^{PC}(\gamma) = 1^{--1}$

Since $\mathbf{q}_{\gamma} = \mathbf{0}$, the photons are **indirectly** detected : in their interactions they produce **electrons** and/or **positrons** which subsequently interact (**e.m.**) with matter.

Photons may be **absorbed** (photoelectric effect or e+e- pair creation) or **scattered** (Compton scattering) through large deflection angles.

ightarrow difficult to define a mean range ightarrow an attenuation law is introduced :

$$I(x) = I_0 e^{-\mu x}$$

$$\mu = N \sigma = \frac{N_A}{A} \rho \sigma \equiv \frac{1}{\lambda}$$

See also slide 8

 μ absorption coefficient

- N atoms/m³
- A masse molaire
- N_A nombre Avogadro
- ρ density
- σ Photon cross section
- $\begin{array}{ll} \lambda & \text{Mean free path or} \\ & \text{absorption lenght} \end{array}$

γ Absorption lenght ($\lambda' \equiv 1/\mu'$)

1.Photoelectric effect

1.Photoelectric effect

Atom de-excitation (after photoelectric effect)

General definition of fluorescence

Emission of light (UV to near infrared) by an atom, molecule that has absorbed light or other electromagnetic radiation, within the range of 0.5 to 20 nanoseconds

Energy levels in a molecule :

2. Compton scattering

Scattering of γ on « **free** » electrons $\gamma + e --> \gamma' + e$

In the matter electrons are bounded. When the γ energy, $E_{\gamma} >>$ binding electron energy the electron can be considered as free.

Compton Cross Section

Called also photon conversion

For energy-momentum conservation this process cannot take place in 'vacuum', an interaction with an electromagnetic field is necessary

Pair production in the field of the nucleus

Pair production in the field of **an electron** (smaller probability $\sim 1/Z$)

Threshold process : $\mathbf{E}_{\gamma} > 2 \text{ m}_{e}\text{c}^{2} (1 + \text{m}_{e}/\text{m}_{x})$ $m_{x} = m_{N} \text{ or } m_{x} = m_{e}$

Kinetic energy transferred to the "target" (nucleus or electrons)

First experimental observation of a positron

e⁺ e⁻ pair production cross-section

Normalized e⁺ e⁻ pair production cross section

LPM =Landau–Pomeranchuk–Migdal cross section.

fractional electron energy $x = E/k = E_e/E_{\gamma}$

γ total cross section

Compton scattering

Several other effects take place (not discussed here):

Rayleigh Scattering (scattering on atmosphere particles, blue sky)

Photo Nuclear Interactions (Giant Dipole Resonance, collective excitation of atomic nuclei).

Dependence on Z et on E

Electromagnetic showers

Dominant processes for photons (and electrons) at very high energies

$$t_{max} = \ln \frac{E_{inc}}{Ec} - \frac{1}{0.5} \begin{bmatrix} e - \\ gamma \end{bmatrix}$$

$$L 95\% \approx t_{max} + 0.08 Z + 9.6 [X0]$$

L 95% = longitudinal shower containment

t_{max} =depth in radiation length units, where the max energy is deposited

E_{in}= incoming photon energy

 E_c = critical energy

Also electrons can start e.m. showers

Hadron collisions and interaction lengths

The total cross section for very high energy hadrons is expressed as:

 $\sigma_{\rm T} = \sigma_{\rm elastic} + \sigma_{\rm inelastic}$

The inelastic part of the total cross-section is susceptible to induce a hadron shower

(increase of particles multiplicity)

Two mean-lengths are introduced:

nuclear collision length

$$\lambda_T = \frac{A}{N_A \sigma_T} \text{g cm}^{-2}$$

nuclear interaction length

$$\lambda_I = \frac{A}{N_A \sigma_{inelastic}} \mathrm{g} \,\mathrm{cm}^{-2}$$

See M. Delmastro slides for more details

95% containment of a hadronic shower is for a material thickness of :

L 95%(in units of λ_1) ~ 1+1.35 ln (E(GeV))

\rightarrow ~ 10 interaction lengths are needed to contain a 1 TeV hadronic shower

In high A materials $\lambda_1 > X_0$ This explains why hadron calorimeters are after installed electromagnetic

Material	Z	A	$\langle Z/A \rangle$	length λ_T	Nucl.inter. length λ_I {g cm ⁻² }	Rad.len. X_0 $g \text{ cm}^{-2}$	$\frac{dE/dx _{\rm min}}{\{ {\rm MeV} \\ {\rm g}^{-1}{\rm cm}^2 \}}$	$\{{\rm g~cm^{-3}}\}$	Melting point (K)	Boiling point (K)	Refract. index (@ Na D)
H ₂	1	1.00794(7)	0.99212	42.8	52.0	63.04	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_2	1	2.01410177803(8)	0.49650	51.3	71.8	125.97		0.169(0.168)	18.7	23.65	1.11 138.
He	2	4.002602(2)	0.49967	51.8	71.0	94.32	<pre>\</pre>	0.125(0.166)		4.220	1.02[35.0]
Li	3	6.941(2)	0.43221	52.2	71.3	82.78	1.639	0.534	453.6	1615.	1
Be	4	9.012182(3)	0.44384	55.3	77.8	65.19	1.595	1.848	1560.	2744.	
C diamond	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.725	3.520			2.42
C graphite	6	12.0107(8)	0.49955	59.2	85.8	42.70	1.742	2.210			
N_2	7	14.0067(2)	0.49976	61.1	89.7	37.99		0.807(1.165)	63.15	77.29	1.20[298.]
O_2	8	15.9994(3)	0.50002	61.3	90.2	34.24		1.141(1.332)	54.36	90.20	1.22 271.
F_2	9	18.9984032(5)	0.47372	65.0	97.4	32.93		1.507(1.580)	53.53	85.03	[195.]
F_2 Ne	10	20.1797(6)	0.49555	65.7	99.0	28.93		1.204(0.839)	24.56	27.07	1.09[67.1]
Al	13	26.9815386(8)	0.48181	69.7	107.2	24.01	1.615	2.699 (933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2	108.4	21.82	1.664	2.329	1687.	3538.	3.95
Cl ₂	17	35.453(2)	0.47951	73.8	115.7	19.28	(1.630)	1.574(2.980)	171.6	239.1	[773.]
Ar	18	39.948(1)	0.45059	75.7	119.7	19.55	(1.519)	1.396(1.662)	83.81	87.26	1.23[281.]
Ti	22	47.867(1)	0.45961	78.8	126.2	16.16	1.477	$4.{\hat{5}}40$	1941.	3560.	
Fe	26	55.845(2)	0.46557	81.7	132.1	13.84	1.451	7.874	1811.	3134.	
Cu	29	63.546(3)	0.45636	84.2	137.3	12.86	1.403	8.960	1358.	2835.	
Ge	32	72.64(1)	0.44053	86.9	143.0	12.25	1.370	5.323	1211.	3106.	
Sn	50	118.710(7)	0.42119	98.2	166.7	8.82	1.263	7.310	505.1	2875.	
Xe	54	131.293(6)	0.41129	100.8	172.1	8.48	(1.255)	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	110.4	191.9	6.76	1.145	19.300	3695.	5828.	
Pt	78	195.084(9)	0.39983	112.2	195.7	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(4)	0.40108	112.5	196.3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	114.1	199.6	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6	209.0	6.00	1.081	18.950	1408.	4404.	

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Abridged from pdg.lbl.gov/AtomicNuclearProperties by D. E. Groom (2007). Quantities in parentheses are for NTP (20° C and 1 atm), and square brackets indicate quantities evaluated at STP. Boiling points are at 1 atm. Refractive indices *n* are evaluated at the sodium

Material Z A	$\langle Z/A \rangle$	Nucl.coll.	Nucl.inter.	Rad.len.	$dE/dx _{min}$	Density	Melting	Boiling	Refract.
		length λ_T	length λ_I	X_0	{ MeV	$\{g \ cm^{-3}\}$	point	point	index
			$\{g \text{ cm}^{-2}\}$	_	· · ·	$(\{g\ell^{-1}\})$	(K)	(K)	(@ Na D
1		{g cm }	{g cm }	{g cm }	g cm }	$(\{g^{\ell}, f\})$	(R)	(11)	(@ Na D
Air (dry, 1 atm)	0.49919	61.3	90.1	36.62	(1.815)	(1.205)		78.80	
Shielding concrete	0.50274	65.1	97.5	26.57	1.711	2.300			
Borosilicate glass (Pyrex)	0.49707	64.6	96.5	28.17	1.696	2.230			
Lead glass	0.42101	95.9	158.0	7.87	1.255	6.220			
Standard rock	0.50000	66.8	101.3	26.54	1.688	2.650			
Methane (CH ₄)	0.62334	54.0	73.8	46.47	(2.417)	(0.667)	90.68	111.7	[444.]
Ethane (C_2H_6)	0.59861	55.0	75.9	45.66	(2.304)	(1.263)	90.36	184.5	
Butane (C_4H_{10})	0.59497	55.5	77.1	45.23	(2.278)	(2.489)	134.9	272.6	
Octane (C_8H_{18})	0.57778	55.8	77.8	45.00	2.123	0.703	214.4	398.8	
Paraffin $(CH_3(CH_2)_{n \approx 23}CH_3)$	0.57275	56.0	78.3	44.85	2.088	0.930			
Nylon (type $6, 6/6$)	0.54790	57.5	81.6	41.92	1.973	1.18			
Polycarbonate (Lexan)	0.52697	58.3	83.6	41.50	1.886	1.20			
Polyethylene ([CH ₂ CH ₂] _n)	0.57034	56.1	78.5	44.77	2.079	0.89			
Polyethylene terephthalate (Mylar)	0.52037	58.9	84.9	39.95	1.848	1.40			
Polymethylmethacrylate (acrylic)	0.53937	58.1	82.8	40.55	1.929	1.19			1.49
Polypropylene	0.55998	56.1	78.5	44.77	2.041	0.90			
Polystyrene ([C ₆ H ₅ CHCH ₂] _n)	0.53768	57.5	81.7	43.79	1.936	1.06			1.59
Polytetrafluoroethylene (Teflon)	0.47992	63.5	94.4	34.84	1.671	2.20			
Polyvinyltoluene	0.54141	57.3	81.3	43.90	1.956	1.03			1.58
Aluminum oxide (sapphire)	0.49038	65.5	98.4	27.94	1.647	3.970	2327.	3273.	1.77
Barium flouride (BaF ₂)	0.42207	90.8	149.0	9.91	1.303	4.893	1641.	2533.	1.47
Carbon dioxide gas (CO_2)	0.49989	60.7	88.9	36.20	1.819	(1.842)			[449.]
Solid carbon dioxide (dry ice)	0.49989	60.7	88.9	36.20	1.787	1.563	Sublimes	s at 194.7	K
Cesium iodide (CsI)	0.41569	100.6	171.5	8.39	1.243	4.510	894.2	1553.	1.79
Lithium fluoride (LiF)	0.46262	61.0	88.7	39.26	1.614	2.635	1121.	1946.	1.39
Lithium hydride (LiH)	0.50321	50.8	68.1	79.62	1.897	0.820	965.		
Lead tungstate (PbWO ₄)	0.41315	100.6	168.3	7.39	1.229	8.300	1403.		2.20
Silicon dioxide (SiO ₂ , fused quartz)	0.49930	65.2	97.8	27.05	1.699	2.200	1986.	3223.	1.46
Sodium chloride (NaCl)	0.55509	71.2	110.1	21.91	1.847	2.170	1075.	1738.	1.54
Sodium iodide (NaI)	0.42697	93.1	154.6	9.49	1.305	3.667	933.2	1577.	1.77
Water (H ₂ O)	0.55509	58.5	83.3	36.08		1.000(0.756)	273.1	373.1	1.33
Silica aerogel	0.50093	65.0	97.3	27.25	1.740	0.200	$(0.03 H_{2})$	O, 0.97 Si	20)

Neutron interactions

Electric charge of the neutron \mathbf{n} : $\mathbf{q}_{n} = \mathbf{0}$

 \implies The **n** interacts via « strong interaction » with nuclei (short range force ~ 10⁻¹³ cm)

Classification of neutrons:

Cold or ultracold neutrons	E _n < 0.025 eV
Thermal or slow neutrons	E _n ~ 0.025 eV
Intermediate neutrons	$E_n \simeq 0.025 \text{ eV} \div 0.1 \text{ MeV}$
Fast neutrons	E _n ~ 0.1 ÷ 10-20 MeV
High energy neutrons	E _n > 20 MeV

Alternative classification:

Slow neutrons	(absorbed)	E _n < ~ 0.5 MeV	
Fast neutrons		E _n > ~ 0.5 MeV	E = 0.5 MeV = 'cadmium cutoff'

Main interaction processes of **n**: scattering (elastic and inelastic), absorption, fission hadron shower production depending on the neutron energy

Neutron interactions

Scattering with nuclei : $n + {}^{A}_{Z}X \rightarrow {}^{A}_{Z}X^{(*)} + n$ Elastic \rightarrow important for moderation Inelastic Absorption & Nuclear reactions: $n + {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + p$ $n + {}^{A}_{Z}X \rightarrow {}^{A-3}_{Z-2}Y + {}^{4}_{2}H_{e}$

n +
$${}^{A}_{Z}X \rightarrow {}^{A+1}_{Z}X + \gamma$$
 radiative capture of n
n + ${}^{A}_{Z}X \rightarrow {}^{A-1}_{Z}X + 2n$

Fission: $n + {}^{A}{}_{Z}X \rightarrow {}^{A1}{}_{Z2}Y + {}^{A2}{}_{Z2}Y + n + n + ...$

Cross section $\approx 1/v_n$ (more probable for low energy) + resonant peaks

Hadron showers $E_n > \sim 100 \text{ MeV}$

Neutron cross section on H₂O, paraffine and protons

Low energy neutron (n) cross section

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Charged particle interactions

- 1) Ionization: inelastic collision with electrons of the atoms
- 2) Bremsstrahlung: photon radiation emission by an accelerated charge
- 3) Multiple Scattering: elastic collision with nucleus
- 4) Cerenkov & transition radiation effects: photon emission
- (• 5) Nuclear interactions (p, π , K): processes mediated by strong interactions)

1) Inelastic collision with electrons of the atoms

Main e.m. process for heavy ($M_{Pa} >> m_e$) charged particles P_a (ex. μ) ionisation +Ze \mathbf{P}_{a} + atom ---> atom⁺ + e⁻ + P_a excitation Ρ P_a + atom ---> atom* + P_a ___ atom + γ

- Both processes together (ionization & excitation) can also happen
- Inelastic collisions on nucleus(N) are much less frequent (since the energy transfer depends inversely on the target mass and m_N >> m_e)
- The particle P_a looses a bit of its energy (in each of the many collisions), its directions is ~ unchanged.

Average energy loss per unit of lenght (- dE/dx) of P_a due to inelastic collisions with electrons of the atom

Analytic formula: Bethe & Bloch (B&B) formula

let'us derive here a simplified 'semi-relativistic' expression for - dE/dx

Simple computation of the average energy loss of particle P_a

(derivation of the B&B formula)

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Simple computation of the average energy loss

Simple computation of the average energy loss

<u>Average</u> energy loss by a charged particle ($m_{Pa} >> m_e$) in matter

Incident charged 'heavy' particle P_a of energy E, M \xrightarrow{dx} matter (e.x. gaz of a detector) Bethe-Bloch formula (B & B) $-\frac{dE}{dx} = K \rho \frac{Z}{A} \frac{z^2}{\beta^2} \int \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{l^2} - 2 \beta^2 - \delta - 2 \frac{c}{Z} \int$

$$r_e$$
 = classic radius of electron = $\alpha/(m_e c^2)$ = 2.8 fm

- m_e = electron mass = 511 KeV
- *z* = charge of incident particle in unit of e
- β = particle speed in unit of c

$$\gamma = 1/\sqrt{1-\beta^2}$$

- T_{max} = maximum Kin energy transferred in a collision)
- ρ = density of the matter
- **Z**, **A** = atomic number, atomic weight of the matter
- I = effective excitation potential of the matterDifficult to compute --> obtained from*dE/dx* $<math display="block">I (eV) = (12+7/Z) Z \qquad (Z \le 12)$

$$I (eV) = (9.76 + 58.8 Z^{-1.19}) Z (Z \ge 12)$$

2 K = 4
$$\pi N_A r_e^2 m_e c^2$$
 = 0.307 MeV g⁻¹ cm²

$$T_{max} = E_e^{max} - m_e = \frac{2m_e\beta^2\gamma^2}{(E_{CM}/M)^2}$$

$$T_{max} \sim 2 m_e c^2 \beta^2 \gamma^2$$
 for $\gamma << m_{Pa} / (2 m_e)$

Shell (C) and Density(δ) effect corrections

C = Relevant at low energy. Small correction. The particle velocity ~ orbital velocity of e
 → the assumption that atomic electrons initially are at rest breaks.
 Takes into account binding energy. The energy loss is reduced.
 The capture process of the particle is possible

δ = "Density effect". Relevant at high energy.

The electric field of the particle polarise the atoms of the matter

→ The energy loss is reduced since shielding of electrical field far from the particle path → moderation of the relativistic rise It depends on the particle speed and on the matter density

Density effect leads to "saturation" at high energy

For high energy: $\delta/2 \rightarrow \ln(\hbar\omega_p/I) + \ln\beta\gamma - 1/2$ $\hbar\omega_p \text{ "Plasma energy"} = \sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$ $(\rho \text{ in g cm}^{-3})$ $Polarisation effect (correction <math>\delta$) \rightarrow reduction of the energy loss

Stopping power or mean specific energy loss = dE/dx ($M_{Pa} >> m_e$)

See Marco Delmastro lectures for explanation of $1/\beta^2$ and $\ln \beta \gamma$

Stopping power

Stopping power at the *minimum of ionization* in greater detail

Use of dE/dx for particle identification

•
$$\vec{p} = m \gamma c \vec{\beta}$$
 $\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$

1

Momentum (GeV/c)

8

0.1

Measuring **independently p** and $\gamma \beta$ one can extract **m** \rightarrow particle identification Plot from 24 dE/dx (keV/am) **PEP4-9** Time Projection Chamber (TPC) 20@SLAC (late '70) 16 12

10

Knock-on electrons or delta(δ) rays or secondary electrons

High energy transfers generates secondary electrons (from delta rays)
Distribution (prob.) of
$$\delta$$
 with kinetic energies $T \gg I$:

$$\frac{d^2N}{dTdx} = \frac{1}{2} K z^2 \frac{Z}{A} \frac{1}{\beta^2} \frac{F(T)}{T^2} \qquad MeV^{-1}cm^2g^{-1}$$

$$K = 0.307 \qquad F(T) = \text{Spin dependent factor}$$
 β , m_{Pa} = speed and mass of primary particle
 $x = \text{``mass thickness''}(\rho^*t)$
Spin 0 $F(T) = F_0(T) = (1 - \beta^2 \frac{T}{T_{max}})$
Spin 1/2 $F(T) = F_{1/2}(T) = F_0(T) + \frac{1}{2}(\frac{T}{E})^2$
Spin 1 $F(T) = F_1(T) = F_0(T)(1 + \frac{1}{3} \frac{Tm_e}{m_{Pa}^2}) + \frac{1}{3}(\frac{T}{E})^2(1 + \frac{1}{2} \frac{Tm_e}{m_{Pa}^2})$
For $T < T_{max}$ & $T < m_{Pa}^2/m_e$ & $F(T) = 1$:
approximate probability to generate a δ with $T > T_s$

in a thin absorber of thickness x:

x:

$$w(Ts, E, x) \simeq 0.3071 x \frac{z^2 Z}{A(g) \beta^2} \frac{1}{T_s}$$

Lucia Di Ciaccio - ESIPAP IPM - January 2019

40

Delta(δ) rays in Micro Pattern Gas Detector

 δ rays produce ionization. This is called secondary to distinguish from the primary (impinging particle)

For a $\beta \approx 1$ particle, on average **one** collision with **T > 10 keV** along a path length of **90 cm** of **Ar** gas

 δ rays are ~ rare, why to care?

Restricted energy loss

- δ rays may escape the detector if it is too thin
 - → The average energy deposits are very often much smaller than predicted by Bethe & Bloch

If the energy transferred is restricted to $T \leq T_{\mathrm{cut}} \leq T_{\mathrm{max}}$ arrow "restricted energy loss"

$$-\frac{dE}{dx}\bigg|_{T < T_{\rm cut}} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \bigg[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\rm cut}}{I^2} - \frac{\beta^2}{2} \left(1 + \frac{T_{\rm cut}}{T_{\rm max}} \right) - \frac{\delta}{2} \bigg]$$

The difference between the **restricted energy loss** formula and the **B & B** is given by the contribution of the (escaping) δ rays

At very high energies ($\beta \gamma > 10^{51}$, $S1 \sim 2-5$) the stopping power reaches a constant called "Fermi plateau":

Lucia Di Ciaccio - ESIPAP IPM - January 2019

$$-\left(\frac{dE}{dx}\right)\left[\frac{MeV}{g/cm^{2}}\right] = 0.3071 \frac{z^{2}Z}{2.A(g)} \ln\left(\frac{2m_{e}T_{cut}}{(hv_{p})^{2}}\right) \qquad hv_{p} = \frac{hv_{p}}{\hbar\omega_{p}} \text{ "Plasma energy"} = \frac{hv_{p}}{\sqrt{\rho\left(\frac{Z}{A}\right)} \times 28.816 \text{ eV}}$$

S1, $hv_p =$ "density effect" parameters depending on the material

50

 $(\rho \text{ in g cm}^{-3})$

Density effect parameters

El.	Z	Z/A	I eV	ρ	$h\nu_p$ eV	S_0	S_1	a	md	δ_0
He	2	0.500	41.8	$\frac{1.66}{10^{-4}}$	0.26	2.202	3.612	0.134	5.835	0.00
Li	3	0.432	40.0	0.53	13.84	0.130	1.640	0.951	2.500	0.14
0	8	0.500	95.0	$\frac{1.33}{10^{-3}}$	0.74	1.754	4.321	0.118	3.291	0.00
Ne	10	0.496	137.0	$\frac{8.36}{10^{-4}}$	0.59	2.074	4.642	0.081	3.577	0.00
Al	13	0.482	166.0	2.70	32.86	0.171	3.013	0.080	3.635	0.12
Si	14	0.498	173.0	2.33	31.06	0.201	2.872	0.149	3.255	0.14
Ar	18	0.451	188.0	$\frac{1.66}{10^{-3}}$	0.79	1.764	4.486	0.197	2.962	0.00
Fe	26	0.466	286.0	7.87	55.17	-0.001	3.153	0.147	2.963	0.12
Cu	29	0.456	322.0	8.96	58.27	-0.025	3.279	0.143	2.904	0.08
Ge	32	0.441	350.0	5.32	44.14	0.338	3.610	0.072	3.331	0.14
Kr	36	0.430	352.0	$\frac{3.48}{10^{-3}}$	1.11	1.716	5.075	0.074	3.405	0.00
Ag	47	0.436	470.0	10.50	61.64	0.066	3.107	0.246	2.690	0.14
Xe	54	0.411	482.0	$5.49 \\ 10^{-3}$	1.37	1.563	4.737	0.233	2.741	0.0
Ta	73	0.403	718.0	16.65	74.69	0.212	3.481	0.178	2.762	0.14
W	74	0.403	727.0	19.30	80.32	0.217	3.496	0.155	2.845	0.14
Au	79	0.401	790.0	19.32	80.22	0.202	3.698	0.098	3.110	0.14
Pb	82	0.396	823.0	11.35	61.07	0.378	3.807	0.094	3.161	0.14
U	92	0.387	890.0	18.95	77.99	0.226	3.372	0.197	2.817	0.14

Data are from [Sternheimer, Berger and Seltzer (1984)]

Restricted energy loss

Another important parameter is :

 Δ_p = most probable energy loss (explained later)

Bethe-Bloch formula describes mean energy loss per unit of lenght.
 The actual energy loss ΔE in a material of thickness x is:

ΔE (energy loss) distribution

 Improved (I) generalized energy loss distribution : convolution of a Landau with a Gaussian (takes better into account distant collisions)

$$f(\Delta E, x)_{I} = \frac{1}{\sqrt{2\pi\sigma_{I}^{2}}} \int_{-\infty}^{+\infty} L(\Delta E - \Delta E', x) \exp(\frac{-\Delta E'}{2\sigma_{I}^{2}}) d(\Delta E')$$

$$\sigma_{I} \sim (1/\beta^{2}) \ln \beta$$

The distribution tends to a Gaussian $f(\Delta E, x) \simeq \frac{1}{\sqrt{2\pi T_{max}} \epsilon (1 - \frac{\beta^2}{2})} \exp(-\frac{(\Delta E - \Delta E_{Bethe})^2}{2T_{max}} \epsilon (1 - \frac{\beta^2}{2})})$

x = thickness

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Energy loss (Δ) distribution (straggling function)

Important to describe the energy loss by a single particle

Fig. 2.10 Curves (a) and (b) (adapted and republished with permission from Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L., *Phys. Rev. A* 28, 615 (1983); Copyright (1983) by the American Physical Society) show the energy loss spectra at 0.736 and 115 GeV/c of incoming particle momentum. Continuous curves are the complete fit to experimental data, i.e., the Landau straggling function folded over the Gaussian distribution taking into account distant collisions.

Stopping power of a compound medium

• For a compound of f elements:

 $-\frac{dE}{\rho \, dx} = \sum_{1}^{f} w_{i} \quad \frac{dE}{\rho_{i} \, dx}$

 ρ_i = density of element i

 $\frac{dE}{\rho_i dx}$ = stopping power of element i

 w_i = mass fraction of element i

$$w_i = (N_i A_i)/A_m$$

 N_i = number of atoms of element i A_i = atomic weight of element i A_m = molar mass of compound

 $A_m = \sum N_i A_i$

• It is also possible to use effective quantities (empirical):

$$Z_{eff} = \sum N_i Z_i$$

$$A_{eff} = \sum N_i A_i$$

$$\ln I_{eff} = (\sum N_i Z_i \ln I_i) / Z_{eff}$$

$$\delta_{eff} = (\sum N_i Z_i \delta_i) / Z_{eff}$$

$$C_{eff} = \sum N_i C_i$$

Particle Range in matter : R

Particle Range in matter : R

 If the medium is thick enough, a particle will progressively decelerate while increasing its stopping power (β^{-5/3}) until it reaches a maximum (called the Bragg peak).

Heidelberg Ion-Beam Therapy Center (HIT)

~ 50 centers around the world

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Stopping power of e[±] by ionization and excitation in matter

For **e[±]** the **Bethe-Bloch formula** must be **modified** since:

For

- 1) the change in direction of the particle was neglected; for e^{\pm} this approximation is not valid (scattering on particle with same mass)
- 2) Pauli Principle : the incoming and outgoing particles are the identical particles

$$\frac{dE}{dx} = 2 \pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[ln \frac{\tau^2 (\tau + 2)}{2(1/m_e c^2)^2} + F(\tau) - \delta - 2 \frac{C}{Z} \right]$$

For electrons: $F(\tau) = 1 - \beta^2 + \frac{(\tau^2/8) - (2 \tau + 1) ln 2}{(\tau + 1)^2} \qquad \tau = \frac{1}{\sqrt{1 - \beta^2}} - 1 = E_k / (mc^2)$
For positrons : $F(\tau) = 2 ln 2 - \frac{\beta^2}{12} \left[23 + \frac{14}{\tau + 2} + \frac{10}{(\tau + 2)^2} + \frac{4}{(\tau + 2)^2} \right]$

- e[±] loose more energy wrt heavier particles since they interact with particles of the same mass
- When a positron comes to a rest it annihilates : $e^+ + e^- \rightarrow \gamma \gamma$ of 511 keV each
- A positron may also undergo $\sigma(Z, E) = \frac{Z\pi r_e^2}{\gamma+1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln(\gamma + \sqrt{\gamma^2 - 1}) - \frac{\gamma + 3}{\sqrt{\gamma^2 - 1}} \right]$ an annihilation in flight: with a cross section :

Lucia Di Ciaccio - ESIPAP IPM - January 2019

2. Bremsstrahlung. Mean radiative energy loss.

- An accelerated (or decelerated) charged particle (P_a) emits electromagnetic radiation (γ)
- Very fundamental process !
- Here the process takes place in the Coulomb field of the nucleus. The amount of screening from the atomic electrons plays an important role
- Relevant in particular for e[±] due to their small mass

$$-\left(\frac{dE}{dx}\right) = N \int_{\sim 0}^{v_0 = E_o/h} hv \frac{d\sigma}{dv} dv = N E_0 \phi(Z^2)$$

Nucleous $F=Qq/r^2$ (Z,A) P_a P_a P_a F_a F_a P_a P_a P_a

d v the bremsstralung process

If P_a = electron:

$$\begin{aligned} \text{If } E_0 &>> m_e c^2 \quad \text{et } E_0 << 137 \ m_e c^2 / Z^{1/3} \qquad \phi \left(Z^2\right) = 4\alpha \ Z^2 \ r_e^2 \ \ln \left(2E_0 / m_e c^2 - 1/3 - f(Z)\right) \\ \text{If } E_0 &>> 137 \ m_e c^2 / Z^{1/3} \qquad \phi \left(Z^2\right) = 4\alpha \ Z^2 \ r_e^2 \ \ln \left(183 \ Z^{-1/3} - 1/18 - f(Z)\right) \\ r_e &= \alpha / (m_e c^2) \end{aligned}$$

See W.R. Leo

f(*Z*)= *Coulomb* correction

2. Bremsstrahlung – Energy Spectrum

LPM =Landau–Pomeranchuk–Migdal cross section.

Normalized bremsstrahlung cross section vs y (= k / E_0) where k = E_γ \rightarrow y = fraction of the electron energy (E_0) transferred to the radiated γ

$K d\sigma/dk = v d\sigma/dv$ (for given E_0)

LPM =Landau–Pomeranchuk–Migdal cross section.

Bremsstrahlung. Mean radiative energy loss

For a particle of charge **z** and mass **m**:

$$\frac{dE}{dx}(z,m) = \left(\frac{m_e}{m}\right)^2 z^2 \frac{dE}{dx}(e^-)$$

Relevant in particular for e[±] due to their small mass

- Shown so far is the mean energy loss due interaction in the field of the nucleus
- Contribution also from radiation which arises in the fields of the **atomic electrons**.
- Cross section are given by the above formula but replacing Z² with Z.
- The overall contribution can be approximated by replacing Z² by Z (Z+1) in all the above formulas

Comparison -dE/dx Bremsstrahlung vs ionisation/excitation

Energie loss due to **brem** is a discrete process: results from the emission of $\sim 1 \gamma$ ou 2γ --> fluctuations

Critical energy (E_c)

- The relevance of bremsstralung wrt ionisation depends on the critical energy (E_c) of the particle P_a in the material
- The critical energy (E_c) is the energy at which the ionization stopping power is equal to the mean radiative energy loss.

For other particles E_c would scale according to the square of their masses with respect to the electron mass.

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Radiation lenght X₀

Mean radiated energy of an electron over a path x in the medium:

$$E_{\text{brem.}}(e^{-}) = E(1 - e^{-x/X_{0}})$$

Radiation lenght X₀

 $X_{0} \begin{cases} Pb = 0.56 \text{ cm} \\ Fe = 1.76 \text{ cm} \\ Air = 30050 \text{ cm} \end{cases}$

$$X'_0 = X_0 \rho$$
 $X'_0 = \frac{716.4 \text{ g cm}^{-2} A}{Z(Z+1) \ln(287/\sqrt{Z})}$

Expressing the mean radiated energy in unit of X_0'

 \rightarrow The probability of the process becomes less dependent on the material

Pour un composé de N éléments :

$$\frac{1}{X_0} = \sum_i w_i \frac{1}{X_{0i}}$$

$$w_i = \text{ fraction in mass of element i}$$

$$X_{0i} = \text{ radiation lenght of element i}$$

For electrons

medium	Z	A	X_0 (g/cm ²)	X ₀ (cm)	E _C (MeV)
hydrogen	1	1.01	63	700000	350
helium	2	4	94	530000	250
lithium	3	6.94	83	156	180
carbon	6	12.01	43	18.8	90
nitrogen	7	14.01	38	30500	85
oxygen	8	16	34	24000	75
aluminium	13	26.98	24	8.9	40
silicon	14	28.09	22	9.4	39
iron	26	55.85	13.9	1.76	20.7
copper	29	63.55	12.9	1.43	18.8
silver	47	109.9	9.3	0.89	11.9
tungsten	74	183.9	6.8	0.35	8
lead	82	207.2	6.4	0.56	7.4
air	7.3	14.4	37	30000	84
silica (SiO ₂)	11.2	21.7	27	12	57
water	7.5	14.2	36	36	83

Electron interactions in copper : higher energies

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Interactions of electrons in lead: a more complete picture

Total energy lost by a muon (μ) per unit length in copper

At very low energy the **Bethe-Bloch** formula is not valid since the speed of the interacting particle is ~ speed of electrons in the atoms. For $\beta\gamma < 0.05$ there are only phenomenological fitting formulae 73

3. Elastic scattering with nuclei

A **charged particle** P_a traversing a medium is deflected many times (mainly) by small-angles essentially due to **Coulomb scattering** in the electromagnetic field of **the nuclei**.

The **energy loss** (or transferred to the nuclei) is small ($m_{nucleus} >> m_{Pa}$) therefore **neglected**, The change of direction is important.

A single collision is described by the Rutherford formula (ignores spin and screening effects)

Multiple scattering: N_{collisions} > 20

The particle follows a zig-zag trajectory

Deflection angles are described by the Molière theory

H. A. Bethe" "Molière's Theory of Multiple Scattering" Phys. Rev. 89, 1256 – Published March 1953

Lucia Di Ciaccio - ESIPAP IPM - January 2019

3. Multiple scattering through small angles (< ~10⁰)

Momentum resolution

Multiple scattering impacts the measurement of the momentum Assume $B \mid v$ particle:

 $Mv^2/R = q | \overrightarrow{v} \overrightarrow{B} |$ $\mathbf{p} = B \mathbf{R}$ (q = 1)

The momentum is measured from R, which is obtained from L and s

The precision on the momentum will depend on the precision on the track reconstruction and also on the **multiple scattering that the particle undergoes**

Momentum resolution $p = q B R \sim B L^2$

Lucia Di Ciaccio - ESIPAP IPM - January 2019

3. Back-scattering of electrons

Effect to take into account when building a detector for low energy electrons (< \sim 10 MeV) Lucia Di Ciaccio - ESIPAP IPM - January 2019 78

4.Cherenkov light emission

Radiation emitted when a charged particle crosses a medium at a speed > than the **phase velocity of light** in the medium

v_{particle} > c/n

n = refracting index

- The medium is electrically polarized by the particle's electric field (oscillating dipoles)
- When the particle travels fast this effect is left in the wake of the particle.
- The emitted energy radiates as a coherent shockwave

Lucia Di Ciaccio - ESIPAP IPM - January 2019

• Number of photons N emitted per unit path length and unit of wave length

$$\frac{dN}{dx d \lambda} = 2 \pi \alpha \frac{1}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2}\right)^{z^2}$$

Number of photons per unit path length is:

$$\frac{dN}{dx} = 2\pi \alpha z_{\beta n>1}^{2} \left(1 - \frac{1}{\beta^{2} n^{2}}\right) \frac{d\lambda}{\lambda^{2}}$$

Assuming $n \sim const$ over the wavelength region detected

$$\frac{dN}{dx} = 2\pi \alpha \sin^2 \theta \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) z^2$$

in λ range 350-500 nm (photomultiplier sensitivity range),

$$\frac{dN}{dx} = 390 \sin^2 \theta \ photons/cm$$

dE/dx due to Cherenkov radiation is small compared to ionization loss (< 1%) and much weaker than scintillating output. It can be neglected in energy loss of a particle, but is Important for particle detection

n = refracting index

Lucia Di Ciaccio - ESIPAP IPM - January 2019

4.Cerenkov light emission

 $\beta > 1/n$

Parameters of Typical Radiator

Medium	n	$oldsymbol{eta}_{ ext{thr}}$	θ _{max} [β=1]	Nph [eV ⁻¹ cm ⁻¹]
Air	1.000283	0.9997	1.36	0.208
Isobutan	1.00127	0.9987	2.89	0.941
Water	1.33	0.752	41.2	160.8
Quartz	1.46	0.685	46.7	196.4

4.Transition radiation

When a relativistic charged particle crosses a boundary between media of different dielectric properties radiation is emitted mostly in the X- ray domain (5-15 KeV)

The electric field generated by the particle is different on the two sides

https://arxiv.org/pdf/1111.4188v1.pdf

(ω_p = plasma energy of medium

- The radiation is emitted in a cone at an angle $\cos \theta = 1/\gamma$
- Number of photons: $N_{\gamma}(\hbar\omega > \hbar\omega_0) = \frac{\alpha z^2}{\pi} \left[\left(\ln \frac{\gamma \hbar \omega_p}{\hbar \omega_0} 1 \right)^2 + \frac{\pi^2}{12} \right]$
- The probability of radiation per transition surface is low ~ $1/2 \alpha$ (fine structure constant)

TRD Module

TR in AMS detector:- polypropylene/polyethylene fibers- Xe/CO2 straw tubes

Figure 33.27: X-ray photon energy spectra for a radiator consisting of $200\ 25\,\mu\text{m}$ thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single surface (dashed line). Curves are shown with and without absorption. Adapted from Ref. 88.

4.Transition radiation

 The energy of radiated photons increases as a function of γ of particle

Energy radiated when a particle z crosses the boundary between vacuum et medium (ω_p = plasma energy)

$$I = \alpha z^2 \gamma \hbar \omega_p / 3$$

Fig. 6.21. Typical dependence of the average energy of transition radiation photons on the electron momentum for standard radiator arrangements [450].

e[±] / hadron rejection > 10³

Useful for particle identification

END

Important for detection: deposited energy

- Deposited energy is what generates the signal in a particle detector
- The energy loss is never equal to the deposited energy as the radiated photons or the secondary particles may escape the medium
- Deposited energy is subjected to large stochastic fluctuations. (stopping power is the mean energy loss)
- If the medium is thin and the number of interactions is small, the deposited energy distribution is asymmetric : it is sometimes called a Landau distribution.
- If the medium is thick or the number of interactions is large, the deposited energy distribution tends to a Gaussian.
- There are no simple and exact analytical formulae to compute deposited energy.
- Nowadays, to estimate the energy deposited in a detector or more generally in a medium we use a Monte-Carlo program which simulates the propagation of the particle through matter : e.g. Geant4

When the measured signal is a current or a charge liberated through ionizing interactions, it is useful to compute the **mean number of created electron-ion pairs**

where : W is the required mean energy to produce an e-ion pair

W > I (mean excitation and ionization potential)

In many gas W ~ 30 eV.

In semiconductor detectors (Ge, Si), W is much lower : e.g. W=3.6 eV for Si and W=2.85 eV for Ge

Better statistics \rightarrow better resolution