

Interactions of Particles/Radiation with Matter

ESIPAP : European School in Instrumentation for Particle and Astroparticle Physics

Non-exhaustive list of « Particles/Radiation » and « Matter »

Motivation

- The interaction between particles \& matter is at the base of several human activities
- Plenty of applications not only in research and not only in Particle \& Astroparticle

Very important for particle detection !

- In order to detect a particle, the latter must interact with the material of the detector, and produce 'a (detectable) signal'

The understanding of particle detection requires the knowledge of the Interactions of particles \& matter

Brief outline and bibliography

\quad Two lectures + two tutorials

- Interaction of charged particles
"heavy » $\left(\mathrm{m}_{\mathrm{Pa}} \gg \mathrm{m}_{\mathrm{e}}\right)$
«light» $\left(\mathrm{m}_{\mathrm{Pa}} \sim \mathrm{m}_{\mathrm{e}}\right)$
- Interaction of neutral particles
Photons
Neutral Hadrons: $\mathrm{n}, \pi^{0}, \ldots$
- Radiation detection and measurement, G.F. Knoll, J. Wiley \& Sons
- Experimental Techniques in High Energy Nuclear and Particle Physics, T. Ferbel, World Scientific
- Introduction to experimental particle physics, R. Fernow, Cambridge University Press
- Techniques for Nuclear and Particle Physics Experiments, W.R. Leo, Springer-Verlag
- Detectors for Particle radiation, K. Kleinknecht, Cambridge University Press
- Particle detectors, C. Grupen, Cambridge monographs on particle physics
- Principles of Radiation Interaction in Matter and Detection, C. Leroy, P.G. Rancoita,
- Nuclei and particles, Emilio Segré, W.A. Benjamin
- High-Energy Particles, Bruno Rossi, Prentice-Hall

```
Also: Particle Data Group http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf
```

For 'professionals'(*) : GEANT4 (for GEometry ANd Tracking)
(Platform for the simulation of the passage of the particles through the matter Using Monte Carlo simulation, Open software)
https://www.sciencedirect.com/science/article/pii/S0168900203013688

My slides have been inspired by :
Hans Christian Schultz-Coulon's lectures
Johann Collot @ ESIPAP 2014
(*) more exists:
Fluka
Garfield (simulation gas detectors)

Interaction Cross Section (σ) definition

σ characterises the probability of a given interaction process

Target parameters:
$\mathrm{n} \equiv$ number of target
particles
$\mathrm{M}=$ target mass
$\mathrm{A}_{\text {mol }}=$ molar mass
$\rho=$ target density
:---:
(Avogadro number)

$\sigma \equiv \frac{\text { Number of interactions per number of target particles in unit time }}{\text { Incident flux }}$
Number of interactions per number of target particles in unit time $=(1 / n) * d N / d t$ Incident flux $=\left(1 / S_{0}\right) * d N_{0} / d t$
where

$$
\sigma \equiv[(1 / \mathrm{n}) * \mathrm{dN} / \mathrm{dt}] /\left[1 / \mathrm{S}_{0} * \mathrm{~d} \mathrm{~N}_{0} / \mathrm{dt}\right]=\mathrm{dN} / \mathrm{dN}_{0} *\left(\mathrm{~S}_{0} / \mathrm{n}\right)
$$

σ doesn't depend from S_{0}

Cross section (σ)

Oder of magnitude of cross sections :
'strong interaction'

Neutron of $\sim 1 \mathrm{eV}$ on ${ }^{48}{ }_{113} \mathrm{Cd} \quad \sigma=100$ barn $=10^{-22} \mathrm{~cm}^{2}$
'weak interaction'

Neutrino of $\sim 1 \mathrm{GeV}$ on $\mathrm{p} \quad \sigma=10^{-38} \mathrm{~cm}^{2}$

Neutron of $\sim 1 \mathrm{eV}$ on ${ }^{48}{ }_{113} \mathrm{Cd}$	$\sigma=100$ barn $=10^{-22} \mathrm{~cm}^{2}$		
Neutrino of $\sim 1 \mathrm{GeV}$ on p	$\sigma=10^{-38} \mathrm{~cm}^{2}$		See also interaction'
:---			
Marco Delmastro			
lectures			

Mean free path $\lambda^{(*)}$

$\boldsymbol{\lambda}=$ Average distance traveled between two consecutive interactions in matter
Another way of expressing the probability of a given process
σ total interaction cross-section
n_{v} number of scattering centers per unit volume

$$
n_{v}=\left(\rho N_{A}\right) / A_{m o l}
$$

Order of magnitudes:

Electromagnetic interaction: $\quad \lambda<\sim 1 \mu \mathrm{~m}$
Strong interaction: $\quad \lambda>\sim 1 \mathrm{~cm}$
Weak interaction: $\quad \lambda>\sim 10^{15} \mathrm{~m}$
A practical signal (> 100 interactions or 'hits') results from the electromagnetic interaction

Particle detection proceeds in two steps :

1) primary interaction
2) charged particle interaction producing the signals

(*) Also: $\lambda=$ absorption length, interaction length, attenuation length, ...then σ is the cross-section for the corresponding process (see later)

Examples: detection of photons(γ), $\pi^{0}(2 \gamma)$, neutrons(n$)$, neutrinos(v$)$

Signals are induced by e.m. interactions of charged particles in detectors

Useful relations of relativistic Kinematics and HEP units

$$
\begin{array}{rll}
\cdot \vec{p}=m_{0} \gamma \vec{v} & \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}} & \beta \equiv v / c
\end{array} \begin{aligned}
& m_{0} \equiv \text { rest mass } \\
& \gamma \equiv \text { Lorentz boost } \\
& m \equiv m_{0} \gamma
\end{aligned}
$$

- Kinetic energy $E_{k}=(\gamma-1) m_{0} c^{2}$
- Total energy $E=\sqrt{(p c)^{2}+\left(m_{0} c^{2}\right)^{2}}$
- Total energy $E=E_{k}+m_{0} c^{2}=m_{0} \gamma c^{2}=m c^{2} \quad \gamma=E /\left(m_{0} c^{2}\right)$

$$
\mathbf{E}=\mathbf{m} \mathbf{c}^{2} \text { «equivalence mass \& energy» }
$$

Units :

$$
[\mathrm{E}]=\mathrm{eV} \quad[\mathrm{~m}]=\mathrm{eV} / \mathrm{c}^{2} \quad[\mathrm{p}]=\mathrm{eV} / \mathrm{c}
$$

«Natural units » $\quad \hbar=1$
$[\mathrm{c}]=\frac{[I]}{[\mathrm{t}]} \quad[\mathrm{II}]=[\mathrm{t}] \quad$ lectures

$$
c=1
$$

$$
[\mathrm{E}]=[\mathrm{p}]=[\mathrm{m}]=[\mathrm{v}]=[\mathrm{t}]^{-1}
$$

Outline: main interaction processes

- Charged particle interactions

-1) Ionization: inelastic collision with electrons of the atoms

- 2) Bremsstrahlung: photon radiation emission by an accelerated charge
e.m. interactions
- 3) Multiple Scattering: elastic collision with nucleus
- 4) Cerenkov \& transition radiation effects: photon emission
(-5) Nuclear interactions (p, π, K): processes mediated by strong interactions)
- Neutral particle interactions
- Photons :
- photoelectric and Compton effects, $\mathrm{e}^{+} \mathrm{e}^{-}$pair production
e.m.
interactions
- High energy neutral hadrons with $>\tau^{\sim} 10^{-10} \mathrm{~s}\left(\mathrm{n}, \mathrm{K}^{0}, ..\right)$:
- nuclear interactions
- Moderate/low energy neutrons :
- scattering (moderation), absorption, fission
- Neutrinos:
- processes mediated by weak interactions

not treated here
After the interaction the particles loose their energy and/or change direction or 'disappear'

Neutral particle interactions

- Photons
- High energy neutral hadrons with $>\tau^{\sim} 10^{-10} \mathrm{~s}\left(\mathrm{n}, \mathrm{K}^{0}, ..\right)$:
- Moderate/low energy neutrons

Interactions of photons (γ)

$$
\gamma: \text { particles with } m_{\gamma}=0, \quad \mathbf{q}_{\gamma}=0, \quad J^{P C}(\gamma)=1^{--}
$$

Since $\mathbf{q}_{\gamma}=\mathbf{0}$, the photons are indirectly detected : in their interactions they produce electrons and/or positrons which subsequently interact (e.m.) with matter.

Main processes :

1. Photoelectric effect
2. Compton scattering
3. e+e-pairs production E γ

Photons may be absorbed (photoelectric effect or e+e- pair creation) or scattered (Compton scattering) through large deflection angles.
\rightarrow difficult to define a mean range \rightarrow an attenuation law is introduced:

$I(x)=I_{0} e^{\mu x}$

$$
\mu=\mathbf{N} \sigma=\frac{\mathbf{N}_{\mathrm{A}}}{\mathrm{~A}} \rho \sigma \equiv \frac{1}{\lambda}
$$

See also slide 8
μ absorption coefficient
N atoms $/ \mathrm{m}^{3}$
A masse molaire
N_{A} nombre Avogadro
ρ density
σ Photon cross section
λ Mean free path or absorption lenght

γ Absorption lenght $\left(\lambda^{\prime} \equiv 1 / \mu^{\prime}\right)$

1.Photoelectric effect

- The energy of the γ is transferred to the electron and the γ disappeares
- Energy of the final electron:
$E_{e}=E_{\gamma}-E_{\text {electron binding energy }}=h \nu-E_{b}$

$$
E_{b}=E_{K} \text { or } E_{L} \text { or } E_{M} \text { etc... }
$$

This effect can take place only on bounded electrons since the process (on 'free' electrons)

$$
\gamma \mathrm{e}-->\mathrm{e}
$$

cannot conserve the momentum and energy

1.Photoelectric effect

- At « low » energy ($\left.\mathrm{I}_{0} \ll \mathrm{E}_{\gamma} \ll \mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}\right)$:

$$
\sigma_{\mathrm{ph}}=\alpha \pi a_{\mathrm{B}} Z^{5}\left(I_{0} / E_{\gamma}\right)^{7 / 2}
$$

- At « high » energy ($E_{\gamma} \gg m_{e} c^{2}$):

$$
\sigma_{\mathrm{ph}}=2 \pi r_{e}^{2} \alpha^{4} Z^{5}\left(m c^{2}\right) / E_{\gamma}
$$

Example:
$\mathrm{a}_{\mathrm{B}}=0.5310^{-10} \mathrm{~m}$
$\mathrm{I}_{0}=13.6 \mathrm{eV}$

$$
\text { For } E_{\gamma}=100 \mathrm{KeV} \quad \sigma(\mathrm{Fe})=29 \text { barn }
$$

$$
\sigma(\mathrm{Pb})=100 \text { barn }
$$

$I_{0}=$ ionisation potential α fine structure constant $r_{e}=\alpha /\left(m_{e} c^{2}\right)=$ classical electron

Atom de-excitation (after photoelectric effect)

Following the emission of a "photoelectron", the atom is in an excited state De-excitation occurs via two effects (time scale: ${ }^{\sim 10-16} \mathrm{~s}$)

- Fluorescence:

Atom $^{*+} \rightarrow$ Atom $^{*+}+\gamma \quad \rightarrow \mathrm{X}$ rays

- Auger effect \quad Atom ${ }^{*+} \rightarrow$ Atom $^{*++}+\mathrm{e}-\quad \rightarrow$ Auger electron

Observed first by Lisa Meitner

Used for surface
Spectroscopy
(AES)

General definition of fluorescence

Emission of light (UV to near infrared) by an atom, molecule that has absorbed light or other electromagnetic radiation, within the range of 0.5 to 20 nanoseconds

Energy levels in a molecule :

2. Compton scattering

Scattering of γ on « free » electrons $\quad \gamma+\mathbf{e}-->\gamma^{\prime}+\mathbf{e}$

In the matter electrons are bounded. When the γ energy, $\mathrm{E}_{\gamma} \gg$ binding electron energy the electron can be considered as free.

Kinetic energy of the outgoing electron $\mathrm{E}_{\mathrm{k}}{ }^{\mathrm{e}}$:

$$
E_{k}{ }^{e}=E_{\gamma}-E_{\gamma^{\prime}}=E_{\gamma} \frac{(1-\cos \theta)\left(E_{\gamma} / m_{e} c^{2}\right)}{1+\left(E_{\gamma} / m_{e} c^{2}\right)\left(1-\cos \theta_{\gamma}\right)}
$$

γ Forward scatterin
γ Backward scattering $\quad \theta_{\gamma}=\pi-->\quad \mathbf{E}_{\gamma^{\prime}}=\mathbf{E}_{\gamma^{\prime} \text { min }} \rightarrow \mathbf{E}_{\mathbf{k}}{ }^{\mathbf{e}}$ is max
Initial photon can give all its energy to final photon
but not to the e \rightarrow The photon cannot be completely absorbed

Compton Edges in the final e spectrum

- γ Backward scattering $\theta_{\gamma}=\pi$

$$
\gamma+e-->\gamma^{\prime}+e
$$

$$
\mathrm{E}_{\gamma^{\prime} \text { min }} \rightarrow \mathrm{E}_{\mathrm{k}}{ }^{\mathrm{e}}{ }_{\text {max }}
$$

$$
E_{\gamma}=E_{\gamma^{\prime}}+E_{k}{ }^{e}
$$

$$
E_{\gamma^{\prime} \min }=\frac{E_{\gamma}}{1+2 E_{\gamma} / m_{e} c^{2}} \rightarrow E_{k}{ }^{e}{ }_{\max }=E_{\gamma} \frac{2 E_{\gamma} / m_{e} c^{2}}{1+2 E_{\gamma} / m_{e} c^{2}}
$$

Transfer of complete γ energy to e via Compton scattering is not possible

Important for single photon detection: the photon cannot be completely absorbed and the scattered electron misses a small amount of initial energy

Compton Cross Section

Klein-Nishina Formula (LO QED):

$$
\begin{gathered}
\frac{d \sigma_{c}^{e}}{d \Omega}=\frac{r_{e}^{2}}{2} \frac{1+\cos ^{2} \theta_{\gamma}}{\left(1+\epsilon\left(1-\cos \theta_{\gamma}\right)\right)^{2}}\left(1+\frac{\epsilon^{2}\left(1-\cos \theta_{\gamma}\right)^{2}}{\left(1+\cos ^{2} \theta_{\gamma}\right)\left(1+\epsilon\left(1-\cos \theta_{\gamma}\right)\right)}\right) \text { (per electron) } \\
\sigma_{c}^{e}=2 \pi r_{e}^{2}\left(\left(\frac{1+\epsilon}{\epsilon^{2}}\right)\left\{\frac{2(1+\epsilon)}{1+2 \epsilon}-\frac{1}{\epsilon} \ln (1+2 \epsilon)\right\}+\frac{1}{2 \epsilon} \ln (1+2 \epsilon)-\frac{1+3 \epsilon}{(1+2 \epsilon)^{2}}\right) \text { (per electron) }
\end{gathered}
$$

$$
\epsilon=\frac{E_{\gamma}}{m_{e}}
$$

@ Small photon energy ($E_{\gamma} \ll m_{e} c^{2}$)

$$
\begin{array}{ll}
\sigma_{C}=\sigma_{T h}\left(1-E_{\gamma} /\left(\mathrm{mc}^{2}\right)\right) & \begin{array}{l}
\sigma_{\text {Th }}=8 \pi / 3 r_{\mathrm{e}}^{2}=0.66 \text { barn } \\
\left.\left(\sigma_{\text {Th }}\right)=\text { Thomson } \sigma\right)
\end{array}
\end{array}
$$

@ Large photon energy ($E_{\gamma} \gg m_{e} c^{2}$)

$$
\sigma_{C} \sim\left(\ln E_{\gamma}\right) / E_{\gamma}
$$

Cross section per atom:

$$
\sigma_{c}^{\text {atom. }}=Z \sigma_{c}^{e}
$$

$$
\begin{gathered}
r_{e}=\alpha /\left(m_{e} c^{2}\right)=\text { classical electron } \\
\text { radius }
\end{gathered}
$$

m_{e}

3. Pair production: $\gamma \rightarrow \mathrm{e}+\mathrm{e}-$

Called also photon conversion
For energy-momentum conservation this process cannot take place in 'vacuum', an interaction with an electromagnetic field is necessary

Pair production in the field of the nucleus

Pair production in the field of an electron (smaller probability ~ 1/Z)

Threshold process : $\mathbf{E}_{\gamma}>2 m_{e} c^{2}\left(1+m_{e} / m_{x}\right)$

$$
m_{x}=m_{N} \text { or } m_{x}=m_{e}
$$

Kinetic energy transferred to the "target" (nucleus or electrons)

First experimental observation of a positron

direction of the high-energy photon

Pb plate

Production of an electron-positron pair by a high-energy photon in a Pb plate

$\mathrm{e}^{+} \mathrm{e}^{-}$pair production cross-section

$\epsilon=\frac{E_{\gamma}}{m_{e}}$
$1 \ll \epsilon<\frac{1}{\alpha Z^{1 / 3}} \quad \sigma_{\text {pair }}^{\text {atom. }}=4 \alpha r_{e}^{2} Z^{2}\left(\frac{7}{9} \ln (2 \epsilon)-\frac{109}{54}\right.$
$\epsilon \gg \frac{1}{\alpha Z^{1 / 3}}$

$$
\sigma_{\text {pair }}^{\text {atom. }}=4 \alpha r_{e}^{2} Z^{2}\left(\frac{7}{9} \ln \left(\frac{183}{Z^{1 / 3}}\right)-\frac{1}{54}\right)
$$

In the high energy regime ($E_{\gamma}->\infty$)

$$
\sigma_{\text {pair }}^{\text {atom. }} \simeq \frac{7}{9} \frac{A}{N_{A}} \frac{1}{X_{0}}
$$

accurate to within a few percent down to energies as low as 1 GeV , particularly for high-Z materials.

X_{0} radiation lenght	$\rho\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	$X_{0}[\mathrm{~cm}]$	
	$\mathrm{H}_{2}[\mathrm{fl}]$.	0.071	865
	C	2.27	18.8
	Fe	7.87	1.76
Pb	11.35	0.56	
Air	$1.2 \cdot 10^{-3}$	$30 \cdot 10^{3}$	

Pair production is the leading effect at high energy

\square Rises above threshold
reaches saturation for large Ey [screening effect]

γ total cross section

Several other effects take place (not discussed here):
Rayleigh Scattering (scattering on atmosphere particles, blue sky)
Photo Nuclear Interactions (Giant Dipole Resonance, collective excitation of atomic nuclei).

Dependence on Z et on E

$E_{\gamma}=1 \mathrm{MeV}$ Compton effect is dominant
$E_{\gamma}=10 \mathrm{MeV}$ in $C(Z=6)$ Compton effect is dominant
in $\mathrm{I}(\mathrm{Z}=53)$ pair production is dominant

Electromagnetic showers

Dominant processes for photons (and electrons) at very high energies

$$
\begin{aligned}
& \mathrm{L} 95 \% \simeq \mathrm{t}_{\max }+0.08 \mathrm{Z}+9.6[\mathrm{XO}]
\end{aligned}
$$

L 95\% = longitudinal shower containment
$\mathrm{t}_{\max }=$ depth in radiation length units, where the max energy is deposited
$\mathrm{E}_{\text {in }}=$ incoming photon energy
$E_{c}=$ critical energy
Also electrons can start e.m. showers

Hadron collisions and interaction lengths

The total cross section for very high energy hadrons is expressed as:

$$
\sigma_{T}=\sigma_{\text {elastic }}+\sigma_{\text {inelastic }}
$$

The inelastic part of the total cross-section is susceptible to induce a hadron shower (increase of particles multiplicity)
Two mean-lengths are introduced:

- nuclear collision length

$$
\lambda_{T}=\frac{A}{N_{A} \sigma_{T}} \mathrm{~g} \mathrm{~cm}^{-2}
$$

- nuclear interaction length

$$
\lambda_{I}=\frac{A}{N_{A} \sigma_{\text {inelastic }}} \mathrm{g} \mathrm{~cm}^{-2}
$$

See M. Delmastro slides for more details
95% containment of a hadronic shower is for a material thickness of :
L 95\%(in units of $\left.\lambda_{1}\right) \simeq 1+1.35 \ln (E(G e V))$
\rightarrow ~ 10 interaction lengths are needed to contain a 1 TeV hadronic shower
In high A materials $\boldsymbol{\lambda}_{1}>\mathbf{X}_{0}$ This explains why hadron calorimeters are after installed electromagnetic

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Abridged from pdg.lbl.gov/AtomicNuclearProperties by D. E. Groom (2007). Quantities in parentheses are for NTP (20 ${ }^{\circ} \mathrm{C}$ and 1 atm), and square brackets indicate quantities evaluated at STP. Boiling points are at 1 atm . Refractive indices n are evaluated at the sodium D line blend $(589.2 \mathrm{~nm})$; values $\gg 1$ in brackets are for $(n-1) \times 10^{6}$ (gases).

Material	Z	A	$\langle Z / A\rangle$	Nucl.coll. Nucl.inter. length λ_{T} length λ_{I} $\left\{\mathrm{g} \mathrm{~cm}^{-2}\right\}\left\{\mathrm{g} \mathrm{~cm}^{-2}\right\}$	$\begin{gathered} \text { Rad.len. } \\ X_{0} \\ \left\{\mathrm{~g} \mathrm{~cm}^{-2}\right\} \end{gathered}$	$\begin{gathered} d E /\left.d x\right\|_{\min } \\ \{\mathrm{MeV} \\ \left.\mathrm{g}^{-1} \mathrm{~cm}^{2}\right\} \end{gathered}$	$\text { n } \begin{gathered} \text { Density } \\ \left\{\mathrm{g} \mathrm{~cm}^{-3}\right\} \\ \left(\left\{\mathrm{g} \ell^{-1}\right\}\right) \end{gathered}$	Melting point (K)	Boiling point (K)	$\begin{aligned} & \text { Refract. } \\ & \text { index } \\ & (@ \mathrm{Na} \mathrm{D}) \end{aligned}$
H_{2}	1	1.00794(7)	0.99212	$42.8 \quad 52.0$	63.04	(4.103)	0.071(0.084)	13.81	20.28	1.11[132.]
D_{2}	1	$2.01410177803(8)$	0.49650	$51.3 \quad 71.8$	125.97	(2.053)	0.169(0.168)	18.7	23.65	1.11[138.]
He	2	$4.002602(2)$	0.49967	$51.8 \quad 71.0$	94.32	(1.937)	0.125(0.166)		4.220	1.02[35.0]
Li	3	6.941(2)	0.43221	$52.2 \quad 71.3$	82.78	1.639	0.534	453.6	1615.	
Be	4	$9.012182(3)$	0.44384	55.3 77.8	65.19	1.595	1.848	1560.	2744.	
C diamond	6	12.0107(8)	0.49955	59.2 85.8	42.70	1.725	3.520			2.42
C graphite	6	12.0107(8)	0.49955	59.2 85.8	42.70	1.742	2.210			
N_{2}	7	$14.0067(2)$	0.49976	$61.1 \quad 89.7$	37.99	(1.825)	0.807(1.165)	63.15	77.29	1.20[298.]
O_{2}	8	15.9994(3)	0.50002	61.3 90.2	34.24	(1.801)	1.141(1.332)	54.36	90.20	1.22[271.]
F_{2}	9	18.9984032(5)	0.47372	$65.0 \quad 97.4$	32.93	(1.676)	$1.507(1.580)$	53.53	85.03	[195.]
Ne	10	20.1797(6)	0.49555	$65.7 \quad 99.0$	28.93	(1.724)	$1.204(0.839)$	24.56	27.07	1.09[67.1]
Al	13	26.9815386(8)	0.48181	$69.7 \quad 107.2$	24.01	1.615	2.699	933.5	2792.	
Si	14	28.0855(3)	0.49848	70.2108 .4	21.82	1.664	2.329	1687.	3538.	3.95
Cl_{2}	17	35.453(2)	0.47951	$73.8 \quad 115.7$	19.28	(1.630)	$1.574(2.980)$	171.6	239.1	[773.]
$\stackrel{\mathrm{Ar}}{\mathrm{Ti}}$	18	39.948(1)	0.45059	$75.7 \quad 119.7$	19.55	(1.519)	$1.396(1.662)$	83.81	87.26	1.23[281.]
Ti	22	47.867(1)	0.45961	$78.8 \quad 126.2$	16.16	1.477	4.540	1941.	3560.	
Fe	26	55.845(2)	0.46557	$81.7 \quad 132.1$	13.84	1.451	7.874	1811.	3134.	
Cu	29	63.546(3)	0.45636	$84.2 \quad 137.3$	12.86	1.403	8.960	1358.	2835.	
Ge	32	72.64(1)	0.44053	$86.9 \quad 143.0$	12.25	1.370	5.323	1211.	3106.	
Sn	50	118.710(7)	0.42119	$98.2 \quad 166.7$	8.82	1.263	7.310	505.1	2875.	
Xe	54	131.293 (6)	0.41129	100.8172 .1	8.48	(1.255)	2.953(5.483)	161.4	165.1	1.39[701.]
W	74	183.84(1)	0.40252	$110.4 \quad 191.9$	6.76	1.145	19.300	3695.	5828.	
Pt	78	195.084(9)	0.39983	$112.2 \quad 195.7$	6.54	1.128	21.450	2042.	4098.	
Au	79	196.966569(4)	0.40108	112.5196 .3	6.46	1.134	19.320	1337.	3129.	
Pb	82	207.2(1)	0.39575	$114.1 \quad 199.6$	6.37	1.122	11.350	600.6	2022.	
U	92	[238.02891(3)]	0.38651	118.6 209.0	6.00	1.081	18.950	1408.	4404.	

Neutron interactions

Electric charge of the neutron $n: q_{n}=0$
\Rightarrow The n interacts via «strong interaction » with nuclei (short range force $\sim 10^{-13} \mathrm{~cm}$)

Classification of neutrons:

Cold or ultracold neutrons	$\mathrm{E}_{\mathrm{n}}<0.025 \mathrm{eV}$
Thermal or slow neutrons	$\mathrm{E}_{\mathrm{n}} \sim 0.025 \mathrm{eV}$
Intermediate neutrons	$\mathrm{E}_{\mathrm{n}} \sim 0.025 \mathrm{eV} \div 0.1 \mathrm{MeV}$
Fast neutrons	$\mathrm{E}_{\mathrm{n}} \sim 0.1 \div 10-20 \mathrm{MeV}$
High energy neutrons	$\mathrm{E}_{\mathrm{n}}>20 \mathrm{MeV}$

Alternative classification:
$\begin{array}{lll}\text { Slow neutrons } & \text { (absorbed) } & E_{n}<\sim 0.5 \mathrm{MeV} \\ \text { Fast neutrons } & & E_{n}>\sim 0.5 \mathrm{MeV}\end{array} \quad \mathrm{E}=0.5 \mathrm{MeV}=$ 'cadmium cutoff'
Main interaction processes of n : scattering (elastic and inelastic), absorption, fission hadron shower production depending on the neutron energy

Neutron interactions

Scattering with nuclei : $\mathrm{n}+{ }_{\mathrm{A}}^{\mathrm{Z}} \mathrm{X}->{ }_{\mathrm{Z}} \mathrm{X}\left({ }^{*}\right)+\mathrm{n}$
Elastic \rightarrow important for moderation
Inelastic
Absorption \& Nuclear reactions:

$$
n+{ }_{z} X->{ }^{A+1}{ }_{z} X+\gamma \quad \text { radiative capture of } n
$$

Fission: $\quad n+{ }_{z} X->{ }^{A 1}{ }_{z 2} Y+{ }^{A}{ }_{z 2} Y+n+n+\ldots$
Cross section $\approx 1 / v_{n}$ (more probable for low energy) + resonant peaks

Hadron showers $E_{n}>\sim 100 \mathrm{MeV}$

$$
\begin{aligned}
& n+{ }_{z} X->A_{Z-1} Y+p \\
& \mathrm{n}+\mathrm{A}_{\mathrm{Z}} \mathrm{X}->{ }^{\mathrm{A}-3}{ }_{\mathrm{Z}-2} \mathrm{Y}+{ }_{2}{ }_{2} \mathrm{H}_{\mathrm{e}} \\
& n+{ }_{Z} X->{ }^{A-1}{ }_{z} X+2 n
\end{aligned}
$$

Cross section of low energy neutrons (n)

Neutron cross section on $\mathrm{H}_{2} \mathrm{O}$, paraffine and protons

Low energy neutron (n) cross section

Charged particle interactions

-1) Ionization: inelastic collision with electrons of the atoms

- 2) Bremsstrahlung: photon radiation emission by an accelerated charge
- 3) Multiple Scattering: elastic collision with nucleus
- 4) Cerenkov \& transition radiation effects: photon emission
(5) Nuclear interactions (p, π, K): processes mediated by strong interactions)

1) Inelastic collision with electrons of the atoms

Main e.m. process for heavy $\left(\mathbf{M}_{\mathbf{P a}_{a}} \gg \mathbf{m}_{\mathrm{e}}\right)$ charged particles $\mathbf{P}_{\mathrm{a}}(\mathrm{ex} . \mu)$

- ionisation

$$
\mathbf{P}_{\mathrm{a}}+\text { atom }--->\text { atom }^{+}+\mathrm{e}^{-}+\mathrm{P}_{\mathrm{a}}
$$

- excitation

$$
\begin{aligned}
& \mathbf{P}_{\mathrm{a}}+\text { atom }--->\text { atom } *+P_{\mathrm{a}} \\
& \longrightarrow \text { atom }+\gamma
\end{aligned}
$$

- Both processes together (ionization $\&$ excitation) can also happen
- Inelastic collisions on nucleus(\mathbf{N}) are much less frequent (since the energy transfer depends inversely on the target mass and $m_{N} \gg m_{e}$)
- The particle P_{a} looses a bit of its energy (in each of the many collisions), its directions is \sim unchanged.

Average energy loss per unit of lenght ($-\mathrm{dE} / \mathrm{dx}$) of P_{a} due to inelastic collisions with electrons of the atom

Analytic formula: Bethe \& Bloch (B\&B) formula
let'us derive here a simplified 'semi-relativistic' expression for $-\mathrm{dE} / \mathrm{dx}$

Simple computation of the average energy loss of particle \mathbf{P}_{a}

(derivation of the B\&B formula)

Assumptions:

- e considered free and initially at rest
- e moving slightly during interaction
- Heavy particle undeflected (v ~ const)
- Electric force acting on e (during $d t=d x / v$):

$$
\overrightarrow{\mathrm{F}=} \frac{\overrightarrow{\mathrm{dp}}}{\mathrm{dt}}
$$

(*) $\Delta \mathrm{p}_{\perp}=\int \mathrm{F}_{\perp} \mathrm{dt}=\mathrm{e} \int E_{\perp} \mathrm{dt}=\mathrm{e} \int E_{\perp} \mathrm{dx} / \mathrm{v}$
E_{\perp} from Gauss law: $\Phi_{S}(\vec{E})=4 \pi$ ze

$$
\int E_{\perp} 2 \pi \mathrm{bdx}=4 \pi z \mathrm{e} \quad \int E_{\perp} \mathrm{dx}=2 \mathrm{ze} / \mathrm{b}
$$

Momentum transferred to one electron: $\Delta p=2 z e^{2} /(b v)$
Kin. Energy transferred to one electron:

$$
\Delta E=\Delta p^{2} /\left(2 m_{e}\right)=\frac{2 z^{2} e^{4}}{} \quad \text { (non-rel.) }
$$

(*) w.r.t the particle direction
$\Delta \mathrm{p} / /$ effects average to 0 (symmetry)

Simple computation of the average energy loss

$d V \approx 2 \pi b d b d x$

$$
\Delta E=\frac{2 z^{2} e^{4}}{m_{e} v^{2} b^{2}}
$$

- Effect of the interaction of P_{a} with the electrons in dV (energy loss by P_{a}):
$-d E(b)=\Delta E \quad N_{c} d V=\frac{4 \pi z^{2} e^{4}}{m_{e} v^{2}} \quad N_{c} \frac{d b}{b} d x$
$N_{c}=\left(\rho N_{A} Z\right) / A_{\text {mol }}=$ number of electrons per unit of volume

$$
-\frac{d E}{d x}=\frac{4 \pi z^{2} e^{4}}{m_{e} v^{2}} N_{c} \ln \frac{b_{\max }}{b_{\min }}
$$

De Broglie wavelength of electron

(after an head-on collision $v_{\mathrm{e}} \approx$| particle |
| ---: |
| velocity $)$ |

$\mathbf{b}_{\text {min }}$ from De Broglie wavelenght $b_{\text {min }}=\lambda_{e}=h / p_{\text {emax }} \sim h /\left(m_{e} \gamma v\right)$

Simple computation of the average energy loss

$\mathbf{b}_{\text {max }}$ from "adiabatic invariance" : the perturbation should occur in a time short compared to the revolution period τ of the bound electron

Close to the Bethe\&Bloch formula (within a factor ~ 2)

Average energy loss by a charged particle ($\mathrm{m}_{\mathrm{Pa}} \gg \boldsymbol{m}_{\boldsymbol{e}}$) in matter

Incident charged

'heavy' particle \mathbf{P}_{a} of energy $\boldsymbol{E}, \boldsymbol{M} \longrightarrow$| dx |
| :---: |
| dx |

matter (e.x. gaz of a detector)
Bethe-Bloch formula (B \& B)

$$
-\frac{d E}{d x}=K \rho \frac{Z z^{2}}{A \beta^{2}}\left[\ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{l^{2}}-2 \beta^{2}-\delta-2 \frac{C}{z}\right]
$$

$r_{e}=$ classic radius of electron $=\alpha /\left(m_{e} c^{2}\right)=2.8 \mathrm{fm}$
$m_{e}=$ electron mass $=511 \mathrm{KeV}$
$2 K=4 \pi N_{A} r_{e}^{2} m_{e} c^{2}=0.307 \mathrm{MeVg}^{-1} \mathrm{~cm}^{2}$
$z=$ charge of incident particle in unit of e
$\beta=$ particle speed in unit of c
$T_{\text {max }}=E_{e}{ }^{\max }-m_{e}=\frac{2 m_{e} \beta^{2} \gamma^{2}}{\left(E_{C M} / M\right)^{2}}$
$\gamma=1 /$ V1- β^{2}
$T_{\text {max }}=$ maximum Kin energy transferred in a collision)
$\rho=$ density of the matter
$Z, A=$ atomic number, atomic weight of the matter
I = effective excitation potential of the matter Difficult to compute --> obtained from $d E / d x$

$$
\begin{array}{ll}
I(\mathrm{eV})=(12+7 / Z) Z & (Z \leq 12) \\
I(\mathrm{eV})=\left(9.76+58.8 Z^{-1.19}\right) Z & (Z \geq 12)
\end{array}
$$

Shell (C) and Density(δ) effect corrections

$\boldsymbol{C}=$ Relevant at low energy. Small correction. The particle velocity ~ orbital velocity of \mathbf{e}
\rightarrow the assumption that atomic electrons initially are at rest breaks.
Takes into account binding energy. The energy loss is reduced.
The capture process of the particle is possible
$\delta=$ "Density effect". Relevant at high energy.
The electric field of the particle polarise the atoms of the matter
\rightarrow The energy loss is reduced since shielding of electrical field far from the particle path \rightarrow moderation of the relativistic rise It depends on the particle speed and on the matter density

Density effect leads to "saturation" at high energv

Stopping power or mean specific energy loss $=\mathbf{d E} / \mathbf{d x}\left(\mathrm{M}_{\mathrm{Pa}} \gg m_{e}\right)$

See Marco Delmastro lectures for explanation of $1 / \beta^{2}$ and $\operatorname{In} \beta \gamma$

Stopping power

* If material thickness is measured in $\rho \mathbf{d x} \quad\left(\mathrm{g} / \mathrm{cm}^{2}\right)$
\rightarrow on vertical l'axis $-\mathrm{dE} /(\rho \mathrm{dx})\left(\mathrm{MeV} \mathrm{cm}^{2}\right) / \mathrm{g}$
\rightarrow the dependence on the material is reduced ($\mathrm{Z} / \mathrm{A} \sim 0.5$)

Stopping power at the minimum of ionization in greater detail

Use of $\mathbf{d E} / \mathbf{d x}$ for particle identification

$$
\cdot \overrightarrow{\mathrm{p}}=\mathrm{m} \gamma \subset \vec{\beta} \quad \gamma \equiv \frac{1}{\mathrm{~V} 1-\beta^{2}}
$$

Measuring independently p and $\gamma \beta$ one can extract $\mathrm{m} \rightarrow$ particle identification

Knock-on electrons or delta($\boldsymbol{\delta}$) rays or secondary electrons

High energy transfers generates secondary electrons (from delta ray/f) Distribution (prob.) of δ with kinetic energies $T \gg \boldsymbol{I}$

$$
\frac{d^{2} N}{d T d x}=\frac{1}{2} K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}} \frac{F(T)}{T^{2}} \cdot \mathrm{MeV}^{-1} \mathrm{~cm}^{2} g^{-1}
$$

$$
\boldsymbol{K}=0.307
$$

$$
F(T)=\text { Spin dependent factor }
$$

$\beta, m_{P a}=$ speed and mass of primary particle $\mathrm{x}=$ "mass thickness" $\left(\rho^{*} \mathrm{t}\right)$
Spin 0

$$
\begin{aligned}
& \text { iss thickness" }\left(\rho^{*} \mathrm{t}\right) \\
& \qquad F(T)=F_{0}(T)=\left(1-\beta^{2} \frac{T}{T_{\max }}\right)
\end{aligned}
$$

Spin $1 / 2 \quad F(T)=F_{1 / 2}(T)=F_{0}(T)+\frac{1}{2}\left(\frac{T}{E}\right)^{2}$

Spin $1 \quad F(T)=F_{1}(T)=F_{0}(T)\left(1+\frac{1}{3} \frac{T m_{e}}{m_{\mathrm{Pa}}^{2}}\right)+\frac{1}{3}\left(\frac{T}{E}\right)^{2}\left(1+\frac{1}{2} \frac{T m_{e}}{m_{\mathrm{Pa}}^{2}}\right)$
For $T \ll T_{\text {max }} \& \quad T \ll m_{P a}{ }^{2} / m_{e} \& \quad F(T)=1:$
approximate probability to generate a $\boldsymbol{\delta}$ with $T>T_{s}$ in a thin absorber of thickness x :

$$
\underset{\text { SIPAP IPM - January } 2019}{\mathrm{w}}(\mathrm{Ts}, E, x) \simeq 0.3071 \times \frac{z^{2} Z}{\mathrm{~A}(g) \beta^{2}} \frac{1}{T_{s}}
$$

Delta($\mathbf{\delta}$) rays in Micro Pattern Gas Detector

δ rays produce ionization. This is called secondary to distinguish from the primary (impinging particle)

For a $\beta \approx 1$ particle, on average one collision with $\mathbf{T}>\mathbf{1 0} \mathbf{k e V}$ along a path length of $\mathbf{9 0} \mathbf{c m}$ of Ar gas
δ rays are \sim rare, why to care?

Restricted energy loss

- δ rays may escape the detector if it is too thin
\rightarrow The average energy deposits are very often much smaller than predicted by Bethe \& Bloch

If the energy transferred is restricted to $T \leq T_{\text {cut }} \leq T_{\max } \rightarrow$ "restricted energy loss"

$$
-\left.\frac{d E}{d x}\right|_{T<T_{\mathrm{cut}}}=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left[\frac{1}{2} \ln \frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\mathrm{cut}}}{I^{2}}-\frac{\beta^{2}}{2}\left(1+\frac{T_{\mathrm{cut}}}{T_{\max }}\right)-\frac{\delta}{2}\right]
$$

The difference between the restricted energy loss formula and the $\mathbf{B} \boldsymbol{\&} \mathbf{B}$ is given by the contribution of the (escaping) $\boldsymbol{\delta}$ rays

At very high energies ($\beta \boldsymbol{\gamma}>\mathbf{1 0}^{\text {S1 }}$,S1~2-5) the stopping power reaches a constant called "Fermi plateau":

$$
-\left(\frac{d E}{d x}\right)\left[\frac{M e V}{g / c m^{2}}\right]=0.3071 \frac{z^{2} Z}{2 . \mathrm{A}(g)} \ln \left(\frac{2 m_{e} T_{\text {cut }}}{\left(h v_{p}\right)^{2}}\right)
$$

$$
h v_{p}=
$$

$$
\hbar \omega_{\mathrm{p}} \text { "'Plasma energy"= }
$$

$$
\begin{aligned}
S 1, h v_{p}= & \text { density effect" parameters } \\
& \text { depending on the material }
\end{aligned}
$$

$$
\sqrt{\rho\langle Z / A\rangle} \times 28.816 \mathrm{eV}
$$

$$
\left(\rho{\text { in } \mathrm{g} \mathrm{~cm}^{-3}}^{-3}\right)
$$

Density effect parameters

Table 2.1 Values of $Z, Z / A, I, \rho$ in units of $\mathrm{g} / \mathrm{cm}^{3}, h \nu_{p}$ and density-effect parameters $S_{\mathrm{O}}, S_{1}, a, m d$, and δ_{O} for elemental substances.

El.	Z	Z / A	I eV	ρ	$h \nu_{p}$ eV	S_{0}	S_{1}	a	$m d$	δ_{0}	
He	2	0.500	41.8	1.66 10^{-4}	0.26	2.202	3.612	0.134	5.835	0.00	
Li	3	0.432	40.0	0.53	13.84	0.130	1.640	0.951	2.500	0.14	
O	8	0.500	95.0	1.33 10^{-3}	0.74	1.754	4.321	0.118	3.291	0.00	
Ne	10	0.496	137.0	8.36 10^{-4}	0.59	2.074	4.642	0.081	3.577	0.00	
Al	13	0.482	166.0	2.70	32.86	0.171	3.013	0.080	3.635	0.12	
Si	14	0.498	173.0	2.33	31.06	0.201	2.872	0.149	3.255	0.14	
Ar	18	0.451	188.0	1.66 10^{-3}	0.79	1.764	4.486	0.197	2.962	0.00	
Fe	26	0.466	286.0	7.87	55.17	-0.001	3.153	0.147	2.963	0.12	
Cu	29	0.456	322.0	8.96	58.27	-0.025	3.279	0.143	2.904	0.08	
Ge	32	0.441	350.0	5.32	44.14	0.338	3.610	0.072	3.331	0.14	
Kr	36	0.430	352.0	3.48	1.11	1.716	5.075	0.074	3.405	0.00	
Ag	47	0.436	470.0	10.50	61.64	0.066	3.107	0.246	2.690	0.14	
Xe	54	0.411	482.0	5.49	1.37	1.563	4.737	0.233	2.741	0.0	
Ta	73	0.403	718.0	10^{-3}							
W	74	0.403	727.0	19.30	84.69	0.212	3.481	0.178	2.762	0.14	
Au	79	0.401	790.0	19.32	80.22	0.217	3.496	0.155	2.845	0.14	
Pb	82	0.396	823.0	11.35	61.07	0.378	3.807	0.094	3.161	0.14	
U	92	0.387	890.0	18.95	77.99	0.226	3.372	0.197	2.817	0.14	

Data are from [Sternheimer, Berger and Seltzer (1984)]

Restricted energy loss

Another important parameter is :
$\Delta_{\mathrm{p}}=$ most probable energy loss (explained later)

$-\mathrm{dE} / \mathrm{dx}$ Fluctuations \rightarrow Energy straggling

- Bethe-Bloch formula describes mean energy loss per unit of lenght.

The actual energy loss ΔE in a material of thickness \mathbf{x} is:

- N number of collisions
- $\delta \mathrm{E}$ energy loss in a single one collision
$\delta \mathrm{E} \quad$ stochastic fluctuations
\rightarrow energy straggling
 (besides it depends on β of the particle)

Complex subject first studied by L. Landau and then by P.V. Vavilov No general exact solutions, few approximate formulas help to estimate it. Introduce :

Significance parameter : K
$N B: \Delta E$ depends on thickness x fer $\delta \mathrm{E}$
mean energy loss $=153.4 \frac{z^{2}}{\beta^{2}} \frac{Z}{A} \rho \delta x \quad \mathrm{keV}$,
in thickness $\rho \mathrm{dx}$

ΔE (energy loss) distribution

$>$ Thin absorbers ($\mathrm{K} \ll 1$):

- Landau distribution. Not analytic, useful approximation :

$$
\begin{aligned}
& L(\lambda)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\lambda+e^{-\lambda}\right)\right) \quad \lambda=\frac{\Delta E-\Delta E_{M P}}{\epsilon} \\
& \Delta E_{M P}=\Delta E_{\text {Bethe }}+\epsilon\left(\beta^{2}+\ln \left(\frac{\epsilon}{T_{\max }}\right)+0.194\right) \mathrm{MeV}
\end{aligned}
$$

- Improved (I) generalized energy loss distribution : convolution of a Landau with a Gaussian (takes better into account distant collisions)

$$
f(\Delta E, x)_{I}=\frac{1}{\sqrt{2 \pi \sigma_{I}^{2}}} \int_{-\infty}^{+\infty} L\left(\Delta E-\Delta E^{\prime}, x\right) \exp \left(\frac{-\Delta E^{\prime 2}}{2 \sigma_{I}^{2}}\right)^{2} d\left(\Delta E^{\prime}\right)
$$

$$
\sigma_{1} \sim\left(1 / \beta^{2}\right) \ln \beta
$$

Thick absorbers ($K \gg 1$):
The distribution tends to a
Gaussian

$$
f(\Delta E, x) \simeq \frac{1}{\sqrt{2 \pi T_{\max } \epsilon\left(1-\frac{\beta^{2}}{2}\right)}} \exp \left(-\frac{\left(\Delta E-\Delta E_{\text {Bethe }}\right)^{2}}{2 T_{\max } \epsilon\left(1-\frac{\beta^{2}}{2}\right)}\right)
$$

[^0]
Energy loss (Δ) distribution (straggling function)

$\Delta / x \quad\left(\mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}\right)$

 $\Delta_{p}=$ most probable value

Important to describe the energy loss by a single particle

Fig. 2.10 Curves (a) and (b) (adapted and republished with permission from Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L., Phys. Rev. A 28, 615 (1983); Copyright (1983) by the American Physical Society) show the energy loss spectra at 0.736 and $115 \mathrm{GeV} / \mathrm{c}$ of incoming particle momentum. Continuous curves are the complete fit to experimental data, i.e., the Landau straggling function folded over the Gaussian distribution taking into account distant collisions.

Stopping power of a compound medium

- For a compound of f elements:

$$
\rho_{i}=\text { density of element i }
$$

$$
-\frac{d E}{\rho d x}=\sum_{1}^{f} w_{i} \frac{d E}{\rho_{i} d x}
$$

$$
\begin{aligned}
& \frac{d E}{\rho_{i} d x}=\text { stopping power of element } \mathrm{i} \\
& w_{i}=\text { mass fraction of element } \mathrm{i}
\end{aligned}
$$

$$
w_{i}=\left(\mathrm{N}_{i} \mathrm{~A}_{i}\right) / \mathrm{A}_{m}
$$

$$
\begin{aligned}
& N_{i}=\text { number of atoms of element } i \\
& A_{i}=\text { atomic weight of element } i \\
& A_{m}=\text { molar mass of compound }
\end{aligned}
$$

- It is also possible to use effective quantities (empirical):

$$
\begin{aligned}
& Z_{\text {eff }}=\sum N_{i} Z_{i} \\
& \mathrm{~A}_{\text {eff }}=\sum \mathrm{N}_{i} \mathrm{~A}_{i} \\
& \text { ln }_{\text {I eff }}=\left(\sum \mathrm{N}_{i} Z_{i} \ln \mathrm{I}_{i}\right) / Z_{\text {eff }} \\
& \delta_{\text {eff }}=\left(\sum \mathrm{N}_{i} Z_{i} \delta_{i}\right) / Z_{\text {eff }} \\
& \mathrm{C}_{\text {eff }}=\sum \mathrm{N}_{i} \mathrm{C}_{i}
\end{aligned}
$$

$$
\mathrm{A}_{m}=\sum \mathrm{N}_{i} \mathrm{~A}_{i}
$$

Particle Range in matter : R

- Charged particles ionize, loose energy until their energy \mathbf{E}_{k} mean range and eneray loss is (almost) zero. The distance to this point is called the range of the particle: R
$R\left(E_{k}\right)=\int_{\mathrm{E}_{\mathrm{k}}}^{\sim}\left(\frac{d x}{d E}\right) d E=\int_{\mathrm{E}_{\mathrm{k}}}^{\sim}\left(\frac{d E}{d x}\right)^{-1} d E$
- This expression ignores the Coulomb scattering (producing a zig-zag trajectory of P_{a})
- A mean range $<R>$ is defined as the distance at which half of the initial particles have been stopped.

$$
\text { If } E_{k}>1 \mathrm{MeV}, R \approx<R>
$$

Proton with $p=1 \mathrm{GeV}$ on target
lead ($\rho=11.34 \mathrm{~g} / \mathrm{cm}^{3}$)

$$
R=200 / 11.34 \sim 20 \mathrm{~cm}
$$

Lucia Di Ciaccio - ESIPAP IPM - January 2019

Particle Range in matter: R

- R may be used to evaluate the particle energy
$R \propto E_{k}{ }^{b}$
$b \sim 1.75$ for
$\mathrm{E}_{\mathrm{k}}<$ minimum ionisation

- Scaling laws

- Particle 1 and 2, in same material

$$
R_{2}\left(E_{k 2}\right) \propto \frac{M_{2} z_{1}^{2}}{M_{1} z_{2}^{2}} R_{1}\left(E_{k 1} * M_{1} / M_{2}\right)
$$

- Same particle in two different materials(1,2))

$$
\begin{equation*}
\frac{R_{1}}{R_{2}}=\frac{\rho_{2}}{\rho_{1}} \frac{V A_{1}}{V A_{2}} \tag{cm}
\end{equation*}
$$

- Compounds:

$$
R_{\text {compound }}=A_{m} / \sum\left(N_{i} A_{i} / R_{i}\right)
$$

10

Range of heavy charged particles

Mean Particle Range

- If the medium is thick enough, a particle will progressively decelerate while increasing its stopping power ($\beta^{-5 / 3}$) until it reaches a maximum (called the Bragg peak).

- Possibility to precisely deposit dose at well defined depth dependent on $E_{\text {beam }}$ (Remember also dependence on $\mathbf{z}^{\mathbf{2}}$)

Applications:
Tumor therapy

Heidelberg lon-Beam Therapy Center (HIT)

~ 50 centers around the world

Stopping power of $e^{ \pm}$by ionization and excitation in matter

For $\mathrm{e}^{ \pm}$the Bethe-Bloch formula must be modified since:

1) the change in direction of the particle was neglected; for $e^{ \pm}$this approximation is not valid (scattering on particle with same mass)
2) Pauli Principle : the incoming and outgoing particles are the identical particles

$$
-\frac{d E}{d x}=2 \pi N_{A} r_{e}^{2} m_{e} c^{2} \rho \frac{Z z^{2}}{A \beta^{2}}\left[\ln \frac{\tau^{2}(\tau+2)}{2\left(1 / m_{e} c^{2}\right)^{2}}+F(\tau)-\delta-2 \frac{C}{Z}\right]
$$

For electrons: $\quad F(\tau)=1-\beta^{2}+\frac{\left(\tau^{2} / 8\right)-(2 \tau+1) \ln 2}{(\tau+1)^{2}}$

$$
\tau=\frac{1}{\sqrt{1-\beta^{2}}}-1=E_{k} /\left(m c^{2}\right)
$$

For positrons: $\quad F(\tau)=2 \ln 2-\frac{\beta^{2}}{12}\left(23+\frac{14}{\tau+2}+\frac{10}{(\tau+2)^{2}}+\frac{4}{(\tau+2)^{2}}\right)$
$\mathrm{e}^{ \pm}$loose more energy wrt heavier particles since they interact with particles of the same mass

- When a positron comes to a rest it annihilates : $\left.\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma\right\rangle$ of 511 keV each
- A positron may also undergo an annihilation in flight: with a cross section :

$$
\sigma(Z, E)=\frac{Z \pi r_{e}^{2}}{\gamma+1}\left[\frac{\gamma^{2}+4 \gamma+1}{\gamma^{2}-1} \ln \left(\gamma+\sqrt{\gamma^{2}-1}\right)-\frac{\gamma+3}{\sqrt{\gamma^{2}-1}}\right]
$$

2. Bremsstrahlung. Mean radiative energy loss.

- An accelerated (or decelerated) charged particle (P_{a}) emits electromagnetic radiation (γ)
- Very fundamental process !
- Here the process takes place in the Coulomb field of the nucleus. The amount of screening from the atomic electrons plays an important role
- Relevant in particular for $\mathrm{e}^{ \pm}$due to their small

$N=$ atoms $/ \mathrm{cm}^{3}\left(\mathrm{~N}=\rho \mathrm{N}_{\mathrm{A}} / \mathrm{A}\right)$
$\mathrm{Z}=$ atomic number
$\mathrm{E}_{0}=$ Initial energy of particle P_{a}
$v_{0}=\mathrm{E}_{0} / \mathrm{h}$
$\mathrm{h} v=$ energy of emitted γ
$\frac{d \sigma}{d v}=\quad \begin{aligned} & \text { Differential cross section of } \\ & \text { the bremsstralung process }\end{aligned}$

If $\mathrm{P}_{\mathrm{a}}=$ electron:
If $\mathrm{E}_{0} \gg m_{e} c^{2}$ et $\mathrm{E}_{0} \ll 137 m_{e} c^{2} / Z^{1 / 3}$

$$
\text { If } \mathrm{E}_{0} \gg 137 m_{e} c^{2} / Z^{1 / 3}
$$

$$
\begin{gathered}
\phi\left(Z^{2}\right)=4 \alpha Z^{2} r_{e}^{2} \ln \left(2 \mathrm{E}_{0} / m_{e} c^{2}-1 / 3-f(Z)\right) \quad \alpha=1 / 137 \\
\phi\left(Z^{2}\right)=4 \alpha Z^{2} r_{e}^{2} \ln \left(183 Z^{-1 / 3}-1 / 18-f(Z)\right) \\
r_{e}=\alpha /\left(m_{e} c^{2}\right)
\end{gathered}
$$

See W.R. Leo

2. Bremsstrahlung - Energy Spectrum

LPM =Landau-Pomeranchuk-Migdal cross section.

Normalized bremsstrahlung cross section vs $y\left(=k / E_{0}\right)$ where $k=E_{\gamma}$
$\rightarrow y=$ fraction of the electron energy $\left(E_{0}\right)$ transferred to the radiated γ
$K \mathbf{d \sigma} / \mathbf{d k}=v \mathbf{d \sigma} / \mathbf{d} \boldsymbol{v} \quad\left(\right.$ for given $\left.\mathrm{E}_{0}\right)$

For high energy E_{0} (small y):
$\frac{d \sigma}{d k}=\left(\frac{1}{k} \frac{A}{X_{0} N_{A}}\left(\frac{4}{3}-\frac{4}{3} y+y^{2}\right)\right.$

Formula accurate except for $y=1$ and $y=0$
see PDG for further details

LPM =Landau-Pomeranchuk-Migdal cross section.

Bremsstrahlung. Mean radiative energy loss

For a particle of charge z and mass m :

$$
{\frac{d E}{d x_{\text {brem }}}}(z, m)=\left(\frac{m_{e}}{m}\right)^{2} z^{2}{\frac{d E}{d x_{\text {brem }}}}_{\left(e^{-}\right)}
$$

- Relevant in particular for $\mathrm{e}^{ \pm}$due to their small mass
- Shown so far is the mean energy loss due interaction in the field of the nucleus
- Contribution also from radiation which arises in the fields of the atomic electrons.
- Cross section are given by the above formula but replacing \mathbf{Z}^{2} with \mathbf{Z}.
- The overall contribution can be approximated by replacing $\mathbf{Z}^{\mathbf{2}}$ by $\mathbf{Z}(\mathbf{Z}+\mathbf{1})$ in all the above formulas

Comparison -dE/dx Bremsstrahlung vs ionisation/excitation

- The average energy loss due to ionisation/excitation increases with the log of the energy and linearly with Z :
- The average energy loss of due to brem increases linearly with energy and linearly with E and $\mathbf{Z}^{\mathbf{2}}$:

$$
\begin{aligned}
& \left.\frac{d E}{d x}\right)_{\text {ion./excit. }} \propto Z / A, \quad 1 / \beta^{2} \ln E \\
& \left.\frac{d E}{d x}\right)_{\text {brem }} \propto Z^{2} / A, E, 1 / m^{2}
\end{aligned}
$$

Energie loss due to brem is a discrete process: results from the emission of $\sim 1 \gamma$ ou 2γ
--> fluctuations

Critical energy (E_{c})

- The relevance of bremsstralung wrt ionisation depends on the critical energy $\left(E_{c}\right)$ of the particle P_{a} in the material
- The critical energy $\left(E_{c}\right)$ is the energy at which the ionization stopping power is equal to the mean radiative energy loss.

$$
\begin{aligned}
& @ E=E_{c} \\
& \text { @ } \mathrm{E}>\mathrm{E}_{\mathrm{c}} \\
& \text { @ } \mathrm{E}<\mathrm{E}_{\mathrm{c}} \\
& \left(\frac{d E}{d x}\right)_{\text {brem. }}=\left(\frac{d E}{d x}\right)_{\text {ion }}\left(\frac{d E}{d x}\right)_{\text {brem. }}>\left(\frac{d E}{d x}\right)_{\text {ion }}\left(\frac{d E}{d x}\right)_{\text {brem. }}<\left(\frac{d E}{d x}\right)_{\text {ion }} \\
& \begin{array}{llll}
\text { For } \mathrm{e}^{ \pm} \text {in: } & \mathrm{Pb} & \mathrm{Ec}=9.5 \mathrm{MeV} & \text { For liquid and solids: } \mathrm{E}_{\mathrm{c}} \sim 610 \mathrm{MeV} /(\mathrm{Z}+1.24) \\
& \mathrm{Cu} & \mathrm{Ec}=24.8 \mathrm{MeV} & \\
& \mathrm{Fe} \quad \mathrm{Ec}=27.4 \mathrm{MeV} & \text { For gas } \mathrm{E}_{\mathrm{c}} \sim 710 \mathrm{MeV} /(\mathrm{Z}+0.92) \\
& \mathrm{Al} & \mathrm{Ec}=51 \mathrm{Mev} &
\end{array}
\end{aligned}
$$

For other particles E_{c} would scale according to the square of their masses with respect to the electron mass.

Radiation lenght X_{0}

Mean radiated energy of an electron over a path x in the medium:

$$
E_{\text {brem }}\left(e^{-}\right)=E\left(1-e^{-x / X_{0}}\right)
$$

Radiation lenght X_{0}

$$
\begin{aligned}
\mathrm{X}_{0} \quad\left\{\begin{array}{l}
\mathrm{Pb}=0.56 \mathrm{~cm} \\
\mathrm{Fe}=1.76 \mathrm{~cm} \\
\text { Air }=30050 \mathrm{~cm}
\end{array}\right.
\end{aligned} 土 \begin{aligned}
& \mathrm{X}_{0}^{\prime} \equiv \mathrm{X}_{0} \rho \quad \begin{array}{l}
X_{0}^{\prime}=\frac{716.4 \mathrm{~g} \mathrm{~cm}^{-2} A}{Z(Z+1) \ln (287 / \sqrt{Z})}
\end{array}
\end{aligned}
$$

Expressing the mean radiated energy in unit of $X_{0}{ }^{\prime}$
\rightarrow The probability of the process becomes less dependent on the material

Pour un composé de N éléments :

$$
\frac{1}{\mathrm{x}_{0}}=\sum_{i} w_{i} \frac{1}{\mathrm{x}_{0 i}} \quad \begin{aligned}
& w_{i}=\text { fraction in mass of element } \mathrm{i} \\
& \mathrm{x}_{0 i}=\text { radiation lenght of element } \mathrm{i}
\end{aligned}
$$

For electrons

medium	\boldsymbol{Z}	A	$X_{0}\left(\mathrm{~g} / \mathrm{cm}^{2}\right)$	$X_{0}(\mathrm{~cm})$	$E_{C}(\mathrm{MeV})$
hydrogen	1	1.01	63	700000	350
helium	2	4	94	530000	250
lithium	3	6.94	83	156	180
carbon	6	12.01	43	18.8	90
nitrogen	7	14.01	38	30500	85
oxygen	8	16	34	24000	75
aluminium	13	26.98	24	8.9	40
silicon	14	28.09	22	9.4	39
iron	26	55.85	13.9	1.76	20.7
copper	29	63.55	12.9	1.43	18.8
silver	47	109.9	9.3	0.89	11.9
tungsten	74	183.9	6.8	0.35	8
lead	82	207.2	6.4	0.56	7.4
air	7.3	14.4	37	30000	84
silica (SiO_{2})	11.2	21.7	27	12	57
water	7.5	14.2	36	36	83

Electron interactions in copper : higher energies

Interactions of electrons in lead: a more complete picture

Total energy lost by a muon (μ) per unit length in copper

At very low energy the Bethe-Bloch formula is not valid since the speed of the interacting particle is \sim speed of electrons in the atoms. For $\beta \gamma<0.05$ there are only phenomenological fitting formulae

3. Elastic scattering with nuclei

A charged particle \mathbf{P}_{a} traversing a medium is deflected many times (mainly) by small-angles essentially due to Coulomb scattering in the electromagnetic field of the nuclei.

The energy loss (or transferred to the nuclei) is small ($m_{\text {nucleus }} \gg m_{P_{a}}$) therefore neglected, The change of direction is important.

- A single collision is described by the Rutherford formula (ignores spin and screening effects)

$$
\frac{d \sigma}{d \Omega}=4 z Z r_{e}^{2}\left(\frac{m_{e} c}{\beta p}\right)^{2} \frac{1}{\sin ^{4} \theta / 2}
$$

- Multiple scattering: $\mathrm{N}_{\text {collisions }}>20$

The particle follows a zig-zag trajectory Deflection angles are described by the Molière theory

[^1]
3. Multiple scattering through small angles ($<\sim 10^{0}$)

For small scattering angles, the distribution of $\vartheta_{x} \approx$ Gaussian

$$
\operatorname{prob}\left(\vartheta_{x}\right) d \vartheta_{x}=\frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left(-\vartheta_{x}^{2} /\left(2 \sigma_{0}^{2}\right)\right) d \vartheta_{x}
$$

(similar for ϑ_{y} and $\vartheta_{\text {space }}{ }^{2}=\vartheta_{x}{ }^{2}+\vartheta_{y}{ }^{2}$)

Where:

$$
\sigma_{0}=\frac{13.6 \mathrm{MeV}}{\beta \mathrm{p}}|\mathrm{z}| \sqrt{\frac{\mathrm{t}}{\mathrm{x}_{0}}}\left(1+0.038 \ln \frac{\mathrm{t}}{\mathrm{x}_{0}}\right)
$$

$\mathrm{t}=$ medium thickness
$\rho=$ matter density
$X_{0}=$ radiation lenght
$\beta, p=s p e e d / c$ and momentum of the incident particle

Particles emerging from the the medium are also laterally shifted:

$$
d^{\mathrm{rms}}=\frac{1}{\sqrt{ } 3} \mathrm{t} \sigma_{0}
$$

Momentum resolution

Multiple scattering impacts the measurement of the momentum Assume B | v particle:

$$
\mathrm{Mv}^{2} / \mathrm{R}=\mathrm{q}\left|\overrightarrow{v^{\wedge}} \vec{B}\right| \quad \mathrm{p}=\mathrm{B} \mathbf{R} \quad(\mathrm{q}=1)
$$

The momentum is measured from \mathbf{R}, which is obtained from \mathbf{L} and \mathbf{s}

$$
\begin{aligned}
& s=R-R \cos \frac{\phi}{2} \approx R \frac{\phi^{2}}{8} \\
& s=R \frac{L^{2}}{8 R^{2}}=\frac{L^{2}}{8 R} \quad R=\frac{L^{2}}{8 s}
\end{aligned}
$$

The precision on the momentum will depend on the precision on the track reconstruction and also on the multiple scattering that the particle undergoes

Momentum resolution $\quad p=q B R \sim B L^{2}$

Multiple scattering introduces an apparent sagitta (0.5\% in Argon gas)
from PDG

Multiple scattering contribution:

$$
\sigma_{\phi}^{\mathrm{z}=1} \approx \frac{14 \mathrm{MeV} / c}{p} \sqrt{\frac{L}{X_{0}}}
$$

$$
\mathbf{p}=\mathrm{q} \mathbf{B} \mathbf{R} \quad R=\frac{L}{\phi}
$$

At small momenta this limits resolution of momentum measurement ...
momentum independent

$$
\frac{\sigma_{\phi}}{\phi}=\frac{14 \mathrm{MeV} / c}{p} \sqrt{\frac{L}{X_{0}}} \cdot \frac{R}{L}=\frac{14 \mathrm{MeV} / c}{p} \sqrt{\frac{1}{L X_{0}}} \cdot \frac{p}{e B} \sim \frac{1}{\sqrt{L X_{0} B}}
$$

$$
\left(\frac{\sigma_{p}}{p}\right)^{2}=\text { const } \cdot\left(\frac{p}{B L^{2}}\right)^{2}+\text { const } \cdot\left(\frac{1}{B \sqrt{L X_{0}}}\right)^{2} \leqslant \begin{aligned}
& \text { Due to } \\
& \text { multiple } \\
& \text { scattering }
\end{aligned}
$$

3. Back-scattering of electrons

* increases with Z of the material
* is relevant for low energy electrons

$$
\eta=\text { Number of backscattered electrons }
$$

Effect to take into account when building a detector for low energy electrons (< ~ 10 MeV)

4.Cherenkov light emission

Radiation emitted when a charged particle crosses a medium at a speed > than the phase velocity of light in the medium

- The medium is electrically polarized by the particle's electric field (oscillating dipoles)
- When the particle travels fast this effect is left in the wake of the particle.
- The emitted energy radiates as a coherent shockwave

Lucia Di Ciaccio - ESIPAP IPM - January 2019

4.Cerenkov light emission

- Number of photons N emitted per unit path length and unit of wave length

$$
\frac{d N}{d x d \lambda}=2 \pi \alpha \frac{1}{\lambda^{2}}\left(1-\frac{1}{\beta^{2} n^{2}}{ }_{(\lambda)} z^{2}\right.
$$

- Number of photons per unit path length is:

$$
\frac{d N}{d x}=2 \pi \underset{\beta n>1}{\alpha} \int^{\int}\left(1-\frac{1}{\beta^{2} n^{2}}\right) \frac{d \lambda}{\lambda^{2}}
$$

Assuming $n \sim$ const over the wavelength region detected
$\frac{d N}{d x}=2 \pi \alpha \sin ^{2} \theta\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right) z^{2}$
$n=$ refracting index
in λ range 350-500 nm (photomultiplier sensitivity range),
$\frac{d N}{d x}=390 \sin ^{2} \theta$ photons $/ \mathrm{cm}$
$\mathrm{dE} / \mathrm{dx}$ due to Cherenkov radiation is small compared to ionization loss (<1\%) and much weaker than scintillating output. It can be neglected in energy loss of a particle, but is Important for particle detection

Liquids and Solids

Lucia Di Ciaccio - ESIPAP IPM - January 2019

4.Cerenkov light emission

$$
\beta>1 / n
$$

Parameters of Typical Radiator

Medium	n	$\beta_{\text {thr }}$	$\theta_{\max }[\beta=1]$	$N_{\text {ph }\left[\mathrm{eV}^{-1} \mathrm{~cm}^{-1}\right]}$
Air	1.000283	0.9997	1.36	0.208
Isobutan	1.00127	0.9987	2.89	0.941
Water	1.33	0.752	41.2	160.8
Quartz	1.46	0.685	46.7	196.4

4.Transition radiation

- When a relativistic charged particle crosses a boundary between media of different dielectric properties radiation is emitted mostly in the X - ray domain (5-15 KeV)

The electric field generated by the particle is different on the two sides

https://arxiv.org/pdf/1111.4188v1.pdf
($\omega_{\mathrm{p}}=$ plasma energy of medium

- The radiation is emitted in a cone at an angle $\cos \theta=1 / \gamma$
- Number of photons:

$$
N_{\gamma}\left(\hbar \omega>\hbar \omega_{0}\right)=\frac{\alpha z^{2}}{\pi}\left[\left(\ln \frac{\gamma \hbar \omega_{p}}{\hbar \omega_{0}}-1\right)^{2}+\frac{\pi^{2}}{12}\right]
$$

- The probability of radiation per transition surface is low $\sim 1 / 2 \alpha$ (fine structure constant)

TRD Module
TR in AMS detector:

- polypropylene/polyethylene fibers
- $\mathrm{Xe} / \mathrm{CO}_{2}$ straw tubes

Figure 33.27: X-ray photon energy spectra for a radiator consisting of $20025 \mu \mathrm{~m}$ thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single surface (dashed line). Curves are shown with and without absorption. Adapted from Ref. 88.

4.Transition radiation

- The energy of radiated photons increases as a function of γ of particle

Energy radiated when a particle z crosses the boundary between vacuum et medium ($\omega_{\mathrm{p}}=$ plasma energy)

$$
I=\alpha z^{2} \gamma \hbar \omega_{p} / 3
$$

Fig. 6.21. Typical dependence of the average energy of transition radiation photons on the electron momentum for standard radiator arrangements [450].
$\mathrm{e}^{ \pm} /$hadron rejection $>10^{3}$

Useful for particle identification

END

Important for detection: deposited energy

- Deposited energy is what generates the signal in a particle detector
- The energy loss is never equal to the deposited energy as the radiated photons or the secondary particles may escape the medium
- Deposited energy is subjected to large stochastic fluctuations. (stopping power is the mean energy loss)
- If the medium is thin and the number of interactions is small, the deposited energy distribution is asymmetric : it is sometimes called a Landau distribution.
- If the medium is thick or the number of interactions is large, the deposited energy distribution tends to a Gaussian.
- There are no simple and exact analytical formulae to compute deposited energy.
- Nowadays, to estimate the energy deposited in a detector or more generally in a medium we use a Monte-Carlo program which simulates the propagation of the particle through matter : e.g. Geant4

Important for detection: creation of electron-ion pairs

When the measured signal is a current or a charge liberated through ionizing interactions, it is useful to compute the mean number of created electron-ion pairs

$$
\mathrm{n}=\frac{\Delta \mathrm{E}_{\text {deposited }}}{\mathrm{W}}
$$

where : \mathbf{W} is the required mean energy to produce an e-ion pair
W > I (mean excitation and ionization potential)

In many gas $\quad W \sim 30 \mathrm{eV}$.

In semiconductor detectors (Ge, Si), W is much lower : e.g. $\mathrm{W}=3.6 \mathrm{eV}$ for Si and $\mathrm{W}=2.85 \mathrm{eV}$ for Ge

Better statistics \rightarrow better resolution

[^0]: x = thickness

[^1]: H. A. Bethe" "Molière's Theory of Multiple Scattering" Phys. Rev. 89, 1256 - Published March 1953

