STUDIES OF THE LOW- ν METHOD WITH THE SAND NEAR DETECTOR OF THE DUNE EXPERIMENT

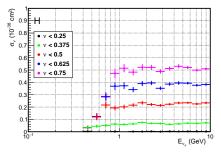
Uladzislava Yevarouskaya

Supervised by: S. Cherubini, C. Distefano, P. Sapienza

DUNE-IT-SIMU meeting

06 Nov 2020

Uladzislava Yevarouskaya (DUNE-IT-SIMU m

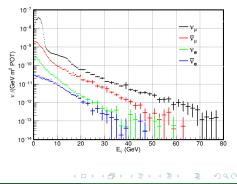

Master thesis

06 Nov 2020 1 / 13

- The aim of the method ¹: Precisely determine the $\nu(\bar{\nu})$ flux at the ND in order to measure the oscillation at the FD.
- The idea of the method, based on the fact that inclusive CC neutrino cross section in the limit of low neutrino energy transfer ($\nu \rightarrow 0$) does not depend on the neutrino initial energy.
- Neutrino CC event spectrum for $\nu < \nu_0$ cut can be used to determine the neutrino flux as a function of E_{ν} :

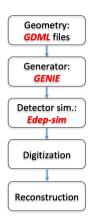
$$\Phi = \frac{U_{\nu}(D_{\nu} - B_{\nu})}{C_{\nu} \cdot \Delta E \cdot NPOTs} \rightarrow \text{Cross-section:}$$

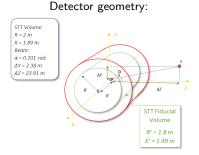
$$\sigma = k \frac{U(D-B)}{\Phi \cdot \Delta E \cdot T \cdot NPOTs}$$

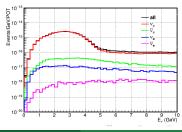


¹A. Bodek et al. "Methods to determine neutrino flux at low energies" (

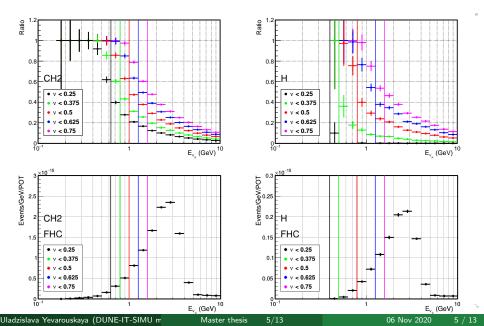
Selection: CC interactions on CH2


Two ν event samples:


- Flat spectrum: to tune the low- ν method
- The beam sample: to perform the analysis (50% MC/Data)
- \rightarrowtail Beam flux: 120 GeV proton, $1.1\times 10^{21} \mbox{ POT/year}$
- → Geometry: internal STT tracker (nd_hall_kloe_sstonly.gdml provided by Matteo)
- $\rightarrowtail \text{ Beam mode: FHC}$
- → Detector: KLOE inner tracker
- → Generator:GENIE 3.00.06 (G18_02a_00_000)
- \rightarrow Exposure: 5 years (5.5 × 10²¹ POT)


Simulation and reconstruction for SAND

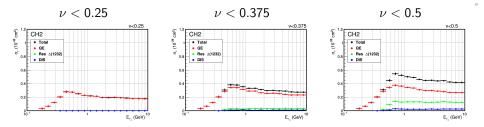
Simulation and reconstraction:



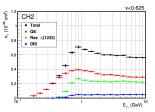
Spectra of interacting neutrinos:

4 / 13

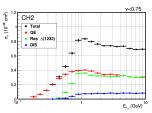
Fraction of Low- ν events using a flat energy distribution

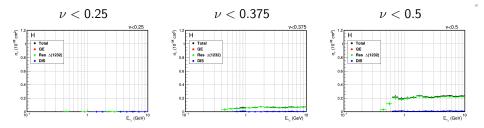

The expected number of interacting neutrinos for 5 years of DUNE exposure in the FHC mode

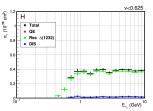
CH2			
V ₀	E _{min}	Evt (5 years)	N^{ν}/N
0.250	0.631	$4.11 \cdot 10^6$	0.09
0.375	0.794	$7.04 \cdot 10^{6}$	0.15
0.500	1.000	$1.02 \cdot 10^{7}$	0.22
0.625	1.259	$1.21 \cdot 10^{7}$	0.26
0.750	1.585	$1.28 \cdot 10^{7}$	0.28
Н			
V ₀	E _{min}	Evt (5 years)	N^{ν}/N
0.250	0.398	$4.91 \cdot 10^3$	0.00
0.375	0.501	$1.94\cdot 10^5$	0.05
0.500	0.794	$6.16 \cdot 10^5$	0.15
0.625	1.259	$8.94 \cdot 10^5$	0.22
0.750	1.585	$1.06 \cdot 10^6$	0.26


Uladzislava Yevarouskaya (DUNE-IT-SIMU m

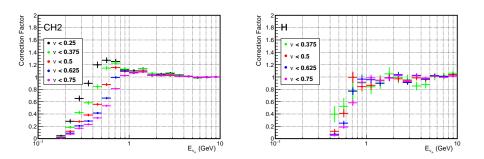
06 Nov 2020 6 / 13


Neutrino reactions: CH2 target

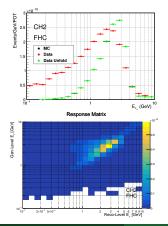

 $\nu < 0.625$

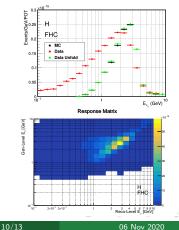

 $\nu < 0.750$

Neutrino reactions: H target

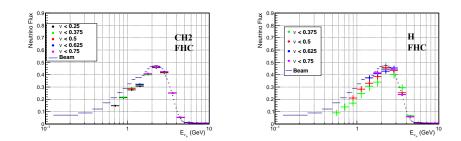

 $\nu < 0.625$

 $\nu < 0.750$



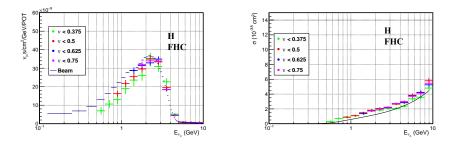

$$C_{\nu} = rac{N(E_{
u},
u <
u_0)}{N(E \simeq 10 \, GeV,
u <
u_0)}$$

Test of Unfolding: Generated and Reconstructed total events spectra


- The RooUnfold package: iterative Bayesian method was used with number of • iterations = 4
- The same events spectra used for data and MC

Measured Relative Flux

$$\Phi \propto rac{U_
u (D_
u - B_
u)}{C_
u \cdot \Delta E \cdot NPOTs}$$



< /□ > < Ξ

Measured absolute flux and cross section for H target

$$\sigma = k \frac{U(D-B)}{\Phi \cdot \Delta E \cdot T \cdot NPOTs}$$

H target: T = 3 · 10²⁹ nucleons in the STT fiducial volume
Normalization: GENIE inclusive cross at 15 GeV (7.2 · 10⁻³⁸ cm²)

Conclusions:

- The obtained partial muon neutrino cross-sections are almost independent on the neutrino energy, supporting the theoretical grounds of the low- ν method.
- The muon neutrino flux and the cross section were evaluated, applying the Low- ν method.
- The extracted neutrino flux reproduces well the beam flux around the peak and at higher energies. A deviation with respect the beam spectrum is found for energies below the peak. Consequently, further studies are required.

Future studies:

- Background estimation (from muon charge mis-reconstruction etc.)
- Analysis optimization (low- ν cut, energy thresholds etc.)
- Studies on unfolding method (systematics, number of iterations)
- Increase the statistics
- Apply the low- ν method for the antineutrino flux.