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Approaches

We have been experimenting with two generative model approaches 
for sparse data generation. Our work regarded to the use of:

I.a variational autoencoder (VAE),

II.and a graph-based generative adversarial network (GAN) (Raghav’s 
talk).

This presentation will be focused on the VAE approach for sparse data 
generation. 
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VAE for sparse data generation

We test a variational autoencoder (VAE) architecture for reconstructing 
and generating jets.
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Dataset

• The dataset used (JEDI-net paper Moreno, Eric A. et al, 
arXiv:1908.05318) consists of high-momentum jets originating from 
gluons, light quarks, Z bosons, W bosons and top quarks. 

• We utilize only the gluon jets dataset (~ 177K jets) for the VAE, 
splitting the data into training (70%), validation (15%) and testing (15%) 
subsets.

Pictorial representations of the different jet categories 
existing in the dataset (arXiv:1908.05318).
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Dataset

• Jets can be characterized as sparse sets of 
items (particles) that are intrinsically 
unordered. 

• Although, sometimes, an ordering might 
be given to the data (e.g. ordering 
particles by decreasing pT), it is also 
important to preserve its permutation 
invariance (depending on application-
specific requirements). 

Graphical representation 
of a gluon jet

(arXiv:1908.05318)
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Dataset

In our VAE study, each jet is represented as a 
list of 100 particles with 3 features px, py and 
pz (particle momentum in cartesian 
coordinates; worked better than η, φ and 
pT, ). In cases, where less than 100 particles 
are present in the jet, zero-padding is applied 
for non-existent particles up to 100. 
• We apply feature-dependent 

standardization such that each feature (px, 
py and pz) has zero mean and unit variance.

Structural representation of 
a gluon jet
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Loss function

The loss function of a VAE consists of two 
terms:
1.The reconstruction loss (e.g. traditionally a 
generic loss function such as the MSE or 
Cross-entropy between the output and the 
input) that penalizes the network for 
producing outputs (reconstructed inputs) 
different from the inputs.
2.The Kullback-Leibler (KL) divergence used as 
a loss function between the encoder’s 
distribution qɸ(z|x) and the pɵ(z) that 
optimizes the probability distribution 
parameters (μ and σ) to closely resemble 
those of the target distribution. 

where
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Reconstruction loss function

• We consider the use of a permutation-invariant Nearest Neighbour 
Distance (NND) known as the Chamfer loss (arXiv:1906.02795) for the 
reconstruction loss.

• We train a VAE using the MSE for the reconstruction loss and then, we 
compare the results with a VAE trained with the Chamfer loss.

• Our goal is to show that training a VAE with the Chamfer reconstruction 
loss provides similar results to a VAE trained with an MSE reconstruction 
loss, whereas the Chamfer loss preserves the permutation invariance. 

23/11/2020



Reconstruction loss function

• To impose physics constraints for our domain-specific application, we 
further modify the reconstruction loss by adding two extra terms, the 
jet mass and the jet pT, to enforce the model to learn the jet 
kinematics.  

• The jet mass and the jet pT (input and reconstructed) are computed 
from the sum of the momenta of the particles in the jet. 
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Analysis

• We first train the VAE and measure its reconstruction performance. In 
order to do so, we compare: 

• the distributions of jet features such as jet mass, jet momentum, jet eta, etc. 
between input and reconstructed (output) jets. The jet features are computed from 
the VAE input and output of the jet constituents’ four-momenta.

• We then, use the decoder of the trained VAE as a generator of jet 
constituents when given an input z of Gaussian sampled latent variables. In 
the same respect, we compare:

• the distributions of jet features between input and randomly generated output 
(gaussian sampled) jets. The jet features are computed from the VAE input and the 
randomly generated output of the jet constituents’ four-momenta.
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Results – Reconstruction  

• We observe that in terms of reconstruction, MSE performs better than the 
Chamfer loss for the jet mass.

• Both the MSE and the Chamfer reconstruction loss function provide similar 
performance for other jet features. 

• In that respect, it is important to highlight the capability of learning jet features that do not 
directly get into the loss function like the jet pseudorapidity η and jet azimuthal angle φ.
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Results - Generation 

• In terms of generation, we observe a lower agreement between input and 
randomly generated output both for the MSE and the Chamfer loss VAE model.

• MSE performs better than the Chamfer loss for the jet mass, although still with 
lower accuracy than in the reconstruction.

• The results are very similar for the rest of the jet features where MSE and the 
Chamfer loss seem to have similar performance. 
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Jets Generation 

• We approximate the latent distribution (prior pɵ(z)) as a Gaussian 
distribution, but from the VAE generation results, it seems that this 
might not be the best distribution to use (probably too simplistic).

• beta-KLD values did not prove adequate to acquire good results with 
generation.  

• Idea of Normalizing Flows (arXiv:1908.09257) : apply a transformation 
on the latent space to acquire a more appropriate, complex 
distribution to sample from.

• Next step: improving the VAE decoder’s performance on jet 
generation by applying Normalizing Flows for learning the prior. 
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Summary

• We trained a variational autoencoder (VAE) on a sparse dataset with a 
permutation-invariant loss function.

• We compared its performance with the performance achieved when training the 
same VAE model with a standard MSE loss. 

• For lower β-KLD values, we can acquire high accuracy in reconstructing sparse 
data from a compressed low dimensional representation of it. 

β can be further optimized to acquire better reconstruction than shown in the 
figures above – we observed this behavior at the very beginning of our studies 
before finding a beta trade-off between reconstruction and generation.

• When the VAE is used as a generator, the two loss functions provide similar 
performance. 

• We wish to highlight the potential of the Chamfer loss for physics-specific 
applications on sparse datasets as, in contrary to generic loss functions that are 
order-dependent (like MSE), that one preserves the permutation-invariance. 
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Next steps

• Splitting work into two packages:
1. Improving the VAE decoder’s performance on generation by applying 

Normalizing Flows (arXiv:1908.09257) for distribution learning. 
2. Improving VAE reconstruction by looking into the possibility of modeling jet 

substructure (e.g. EFPs) and investigating possible applications.

• Moving into a permutation-invariant architecture along with the 
permutation-invariant loss (e.g. graph neural networks, energy flow 
networks, interaction networks, etc.) for the construction of a fully 
permutation-invariant model.
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Backup
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VAE architecture

• ReLU is being used as the activation function on all layers except for 
the last layer where linear activation is used.
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Implementation details

• Models implemented in Pytorch
• Adam optimizer
• Learning rate: 0.001
• Latent dimension: 20
• Early stopping used; patience: 80 epochs
• Physics constraints introduced in the reconstruction loss to force the VAE to 

learn high-level jet features are useful for our domain-specific application.
• The beta regularization term is used on the KL Divergence to weight the 

trade-off between reconstruction and generation of the VAE. Beta is being 
optimized per model.
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Qualitative Analysis

• We plot the average gluon jet image defined as an image of 100x100 pixels 
in the rapidity-azimuthal plane where each pixel reflects the sum of particle 
pT in that pixel.

• In this way, we can qualitatively compare the reconstruction performance of 
the VAE models trained with MSE and Chamfer loss.
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Reconstruction results

Comparison of the distributions of the particles’ features px, py, pz between input 
and reconstructed (output) particles for the two VAE models.
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