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Abstract. To understand experimentally obtained net-proton number cumulants in the search
for the QCD critical point, we study a dynamical model based on an effective quark-meson
Lagrangian with chiral symmetry. We investigate the evolution of the expanding medium
created in a heavy-ion collision using a spatially homogeneous fluid and a time-dependent
order parameter, the sigma field evolved by a Langevin equation. We extract cumulants of
the sigma field along a parametrized freeze-out curve and match the obtained freeze-out points
to corresponding beam energies. These cumulants can be related to cumulants of the net-proton
number through the sigma-proton coupling to provide a qualitative comparison to experimental
data from STAR’s beam energy scan program. We demonstrate that the presence of the spinodal
or mixed phase region around the first-order chiral phase transition allows for a wide interval
of cumulants at the lowest beam energies.

1. Introduction
Quark–gluon plasma (QGP) is a new state of matter that was present at extremely high
temperatures and densities in the early universe. Contrary to a hadronic medium (protons,
neutrons, pions, etc.), it is characterized by deconfinement and chiral symmetry restoration.

The study of heavy ion collisions aims to explore the phase structure of nuclear matter as a
function of baryochemical potential µB and temperature T [1,2]. At µB= 0, a smooth crossover
has been found while for large µB, a discontinuous first-order phase transition is widely expected
which ends at a second-order critical point (CP) [3, 4].

Event-by-event fluctuations of conserved quantities such as net-baryon, net-charge, and net-
strangeness are sensitive to the correlation length and connected proxy to thermodynamic
susceptibilities calculated in lattice QCD [5, 6] or effective model calculations. The fluctuations
of conserved quantities are defined in the form of cumulants. To compare with the experimental
data, ratios of baryon number susceptibilities are used to eliminate the dependence on volume
and temperature of the system which are notoriously difficult to access. Higher order cumulants
of conserved quantities depend directly on higher powers of the correlation length [7], and the
correlation length of the nonequilibrium system depends on expansion time and is limited by



the system size. It has previously been shown that the correlation length increases to about
2 − 3 fm near the CP [8]. Experimental programs such as the beam-energy scan program of
the Relativistic Heavy Ion Collider (RHIC) try to measure how e.g. net-proton skewness and
kurtosis deviate from baseline calculations with e.g. UrQMD or a hadron resonance gas model
to locate the QCD CP [9].

2. The NχFD Bjorken model
The spontaneous chiral symmetry breaking in vacuum as well as the restoration or chiral
symmetry at large T or µB is described by the widely used quark-meson model whose Lagrangian
reads

L = q (iγµ∂µ − gσ) q +
1

2
∂µσ∂

µσ − U(σ) . (1)

In QCD, the quark mass term explicitly breaks chiral symmetry which is introduced as a term
Hσ in the chiral potential as follows,

U(σ, ~π) =
λ2

4

(
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)2 −Hσ . (2)

Here, q represents the light quark doublet q = (u, d). The grand potential given in the mean-field
approximation becomes

Ω(T, µ) = U(σ) + Ωqq̄ . (3)

In this equation, the quark and antiquark contribution is given by

Ωq̄q = −2NcNfT
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This describes the negative pressure of a fermionic gas of quarks and antiquarks with
quasiparticle energies E =

√
p2 +M2, and effective mass of (constituent) quarks M(σ) = gσ

with the coupling g depending on the contributed quark mass in a vacuum. The parameters of
this model are chosen as fπ = 93 MeV, mπ = 138 MeV and H = fπm

2
π.

Note here that one can think of further extensions of this Lagrangian, most notably by
including the Polyakov loop to account for a deconfinement transition as in [10]. Here, we focus on
the criticality of the chiral phase transition which is expected to determine the singular behavior
near the QCD critical point and which is captured with the quark-meson model. Although
the model is admittedly crude, the addition of the Polyakov loop would shift the pseudocritical
temperature at µB = 0 away from the value obtained in lattice QCD calculations [11]. For a
realistic model and equation of state including both quark and hadronic degrees of freedom,
a large number of fields is needed which requires a fine-tuning of many parameters [12]. This
would render any nonequilibrium simulation based on such a model unnecessary complicated
and highly sensitive to the numerics.

From the Lagrangian equation (1), the nonequilibrium chiral fluid dynamics model (NχFD)
is constructed by propagating the chiral order parameter σ with the Langevin equation of
motion [13–15],

σ̈ +

(
D

τ
+ η

)
σ̇ +

δΩ

δσ
= ξ . (5)

Hereby, the dots refer to derivatives with respect to proper time τ , D = 1 in the Hubble term
for an expansion in one direction of the beam axis as assumed by the Bjorken model.

The damping coefficient η has been calculated as
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The white and Gaussian noise ξ (t, x) in the above equation satisfies the fluctuation-dissipation
theorem

〈ξ(t)ξ(t′)〉ξ = δ(t− t′)mση

V
coth

(mσ

2T

)
. (7)

The mass of the field σ is equivalent to the curvature of the thermodynamic potential in
equilibrium depending on temperature and chemical potential,

m2
σ =

∂2Ω

∂σ2

∣∣∣∣
σ=〈σ〉

. (8)

Under the assumption of the Bjorken model that the rapidity distribution of the charged
particles is boost invariant, we obtain the hydrodynamic equations for energy density e and
baryon number density n as [16]

∂e

∂τ
= −e+ p

τ
+
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δΩq̄q

δσ
+
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)
∂σ

∂τ

]
∂σ

∂τ
, (9)

dn

dτ
= −n/τ. (10)

We characterize fluctuations of the sigma field by cumulants Cn of the probability distribution
defined as:

C1 = 〈σ〉, (11)

C2 = 〈(δσ)2〉, (12)

C3 = 〈(δσ)3〉, (13)

C4 = 〈(δσ)4〉 − 3〈(δσ)2〉2. (14)

These are related to mean (M), variance (σ2), skewness (S) and kurtosis (κ) via

M = C1 , σ2 = C2 , Sσ =
C3

C2
, κσ2 =

C4

C2
. (15)

We investigate the higher order cumulant ratios of the sigma field along a freeze-out curve
which has been obtained from thermal model fits to experimental data [17] over a wide range of
beam energies. A polynomial fit yields a parametrization,

T (µB) = a− bµ2
B − cµ4

B , (16)

where a = 0.166 GeV, b = 0.139 GeV−1 and c = 0.053 GeV−3. We furthermore match the point
where our Bjorken evolution hits this freeze-out curve with the corresponding beam energy via:

µB(
√
s) =

d

1 + e
√
s
, (17)

where d = 1.308 GeV and e = 0.273 GeV−1 [18].

3. Fluctuations of the order parameter
We initialize the field and fluid in equilibrium at several starting points in the chirally restored
phase, see the beginning of the trajectories in the phase diagram of the quark-meson model,
figure 1. These points are conveniently characterized by a choice of initial values (T0, µ0). The



Figure 1. The phase structure of chiral phase transition in different initial conditions (T0, µ0)
alongside trajectory of fireball.

coupled system of field and fluid is then evolved according to equations (5) and (10) which gives
an evolution of T and µ that can be seen in the same figure.

The point where the trajectories hit the dashed freeze-out line is used to determine the
event-by-event fluctuations. We hereby use a number of N = 105 events which are randomized
through the stochastic noise term ξ that yields a non-deterministic evolution. The bending of the
trajectories has been discussed in previous publications [16]. It is particularly worth noting here
that, as a consequence of this behavior, the trajectories passing through the first-order phase
transition cross the freeze-out curve twice. For these cases, we calculate the cumulants at both
crossing points to give a range of possible values.

Figure 2 shows the so obtained σ2, Sσ and κσ2 versus beam energy
√
s. We note that for

all these cases, the consideration of the spinodal region and double-crossing of the freeze-out
curve leads to an increased range of possible cumulant values for the lowest beam energies. The
variance, which is more or less constant, decreases by a factor of 2 after passing through the
second crossing, see figure 2(a). A similar effect is observed for the skewness, though somewhat
less dramatic, see figure 2(b). The most dramatic impact is seen in the kurtosis. Although it
increases monotonically within error bars, we see a clear sign change at beam energy

√
s ∼ 4

GeV, see figure 2(c). As argued in [7] strong negative values of the kurtosis of the order parameter
are understood as a direct consequence of a first-order phase transition.

As introduced previously, we ultimately aim to study fluctuations in the net-proton number
Np rather than the order parameter which is not experimentally accessible. However, assuming
a σ-proton coupling, we can assume a relation between the fluctuations in Np and the sigma field
as

δN = δN0 + V g δσ d

∫
p

∂np
∂m

, (18)

where g denotes the coupling constant, d the number of degrees of freedom, fp the proton-number
distribution function and m the dynamically generated mass [7].
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Figure 2. σ2 (a) , Sσ (b) and κσ2 (c) of the sigma field as a function of beam energy
√
s.



Figure 3. The equation of state at T = 0. The dashed orange line signifies the zero pressure
threshold, which makes it easy to see the negative pressure portion. The red dots mark the
negative pressure region in the x-axis.

For correct treatment of these particle number fluctuations, the effect of volume fluctuations
needs to be considered which plays a major role especially for trajectories crossing the first-order
phase transition. Work in this direction is currently in progress.

4. Equation of state at low T
The thermodynamics of strong interactions at low temperature and high density is important for
heavy-ion collisions at low beam energies but also for astrophysics, specifically in understanding
the inner structure of compact stars [19, 20]. Of particular importance for any hydrodynamic
simulation is the equation of state (EoS), especially at ultra-low temperature (T ≈ 0) [21]
and in the presence of spinodal instabilities. As shown in [22], chiral models often suffer from
the problem of negative pressures at low T which allows for the unphysical phenomenon of
stable quark droplets in a vacuum and ultimately leads to a severe overestimation of fluctuation
observables like e.g. net-baryon number moments.

The EoS is obtained by first determining the dynamical values of 〈σ〉 using the gap equation
∂Ω/∂σ = 0. After that, we determine the net-quark density by a derivative of the pressure P as
n = ∂P

∂µ and parametrize both P = −Ω and n through 〈σ〉.
An early result of this research work reveals several features of the obtained equation of state.

Figure 3 shows that the pressure is only slightly above zero at 0.0 < n < 0.2 fm−3. Then, we
have a negative pressure for 0.20 < n < 0.74 fm−3, before the pressure increases in the positive
region for subsequently increasing density.

The negative pressure region poses the aforementioned problems to the nonequilibrium model.
Therefore, more work needs to be done to find a reliable workaround. Currently, we are
investigating comparisons with other models that include further hadronic degrees of freedom
like the sigma-omega model.

5. Summary and conclusions
We have studied cumulant ratios of the sigma field for different beam energies within the
nonequilibrium chiral Bjorken model based on the quark-meson Lagrangian. It must be stressed
that although our theoretical framework is just a simple model it is nevertheless able to describe



the complex nature of dynamical phenomena near a chiral CP. We found a large spread of
possible values for variance, skewness, and kurtosis at the first-order phase transition. Especially
the kurtosis with strongly negative values at low

√
s can hint at the presence of a first-order phase

transition. For comparison with experimental data, we need to evaluate the fluctuations in the
net-proton number after a correct treatment of volume fluctuations and the possible need for an
extension of the Lagrangian to cure the problem of negative pressure at lowest temperatures.
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