
Heuristic compactness maximization algorithm for
two-dimensional single-atom traps rearrangement

T Mamee1,2,3, W Anukool1,2,4 , N Thaicharoen1, N Chattrapiban1,2,4

and P Sompet1,∗
1 Research Center for Quantum Technology, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand
2 Department of Physics and Materials Science, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand
3 Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
4 Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400,
Thailand
∗ E-mail: pimonpan.sompet@cmu.ac.th

Abstract. We establish an algorithm and computational results based on heuristic
rearrangement of randomly filled array toward a defect-free and compact array. In this approach,
the vacancies are filled from the inner layer that is related to the distance from the center of
each loading site. By rearranging the position of atoms that maximize the compactness of the
system layer by layer, the algorithm is set to iterate until the compactness reaches its local
maximum. The results show that by applying the algorithm, the compactness of the system
converges up to ∼97% of the theoretical maximum.

1. Introduction
The construction of defect-free arrays of single atoms is a basis towards synthesizing a fully
controllable and scalable quantum system in terms of interaction and a number of interacting
systems. The system is promising for applications such as quantum information processing [1],
quantum simulation [2], quantum error correction [3] and quantum communication [4]. However,
there is a limitation of constructing a perfectly filled deterministic array of single-atoms due to
the collisional pair-loss induced by light-assisted collision [5] during a single-atom loading process.
In this case, the loading efficiency is bounded to the success probability of ∼50% in the case of
a large red-detuning of the assisted-collision light [5]. This probabilistic loading undoubtedly
creates some vacancies in an initially loaded array. Thus, in order to obtain a defect-free array,
ones can increase the loading efficiency via a more costly and complicated techniques e.g. those
that employ blue-detuned laser light to induce light assisted collisions [6]. Another method is to
rearrange filled traps to remove defected sites from the target area (pre-identified by fluorescence
imaging) [7]. The rearrangement could be accomplished by transporting each atom one-by-one
with a deep optical envelope via a 2d acousto-optic deflector (AOD) [7–9] or by changing the
position of each individual trap inside an array with a spatial light modulator (SLM) via an
optical-phase control [10]. The main focus of this work is in the later approach, the single-atom
trap rearrangement.



Regarding to the capability of creating a fully-filled array, there are three key limitations
constraining the rearrangement process, which are 1) a finite vacuum-limited lifetime of a
trapped atom, 2) the heating mechanism during the trap translation, and 3) the trap size and
separation. In particular, the vacuum-limited lifetime limits the upper bound of the total time an
algorithm takes to calculate and rearrange traps. Concomitantly, the heating mechanism limits
the number of all moves an atom can undergo before kinetic energy overcomes the trapping
potentials. Lastly, the trap size and separation prohibit the translation along diagonals of the
trapping array due to the number loss affected by a merged-trap geometry. Therefore, the atom-
rearrangement algorithm is restricted to only translations along the edge of the array (a line
connecting trap centers) and all the mentioned limitations must be taken into consideration.

In principle, an optimization algorithm [11] can be designed from a brute-force method, i.e.
comparing total costs of all possible trajectories regardless of computation costs. However,
due to the key limitations mentioned, the calculation of all possible trajectories is highly time
consuming and therefore impractical [9]. Other alternatives that offer more practical calculation
time and obtain nearly optimized solutions, concern a heuristic paradigm to solving problems of
rearrangement from a specific set of instructions. Examples are the short-move first algorithm [7],
the compression algorithm [9], the A* searching algorithm (ASA) and the heuristic cluster
algorithm (HCA) [12].

In this work, we show a preliminary demonstration of a heuristic algorithm that we developed
called the heuristic compactness maximization algorithm. The algorithm focuses on compressing
a trap distribution to maximally packed with filled traps to minimize a designated spatial cost
function and thus maximize the “compactness” of the system. As a results, the algorithm can
be used to maximize compactness of the system in any desired region by minimizing the variable
where the performance depends on the array’s size.

2. Theory and background: Heuristic compactness maximization algorithm
2.1. Overall idea of the algorithm
The main task of the heuristic compactness maximization algorithm is to maximize the
compactness of the system defined through a moment matrix of filled-site P = O ⊙ D, the
element-wise multiplication between the occupancy matrix O and the distance matrix D. The
element of P at each array site {x, y} is described by Px,y = Ox,yDx,y, where Ox,y is the
occupancy of a trap with value 1(0) for the occupied(unoccupied) trap, and the element Dx,y

of D is defined as Dx,y =
√

(x− x0)2 + (y − y0)2, where {x0, y0} is the array center. The
summation of all elements of P is

Ps =
∑
x

∑
y

Px,y, (1)

which represents the strength of the moment related to an average spreading of the occupied
site from the array’s center. Therefore, when the algorithm minimizes Ps, the compactness is
maximized. As a result, the atoms seek the sites that have lower Px,y, which allows one to define
the final shape of the filled system via the P matrix accordingly.

2.2. Algorithm flowchart
The flowchart of the algorithm is shown in figure 1(a). In the beginning, an initial traps loading
is constructed from the Monte-Carlo method with 50-percent success probability to obtain a
single atom for each trap. As a result, the temporal distribution of each single trap follows to
a sub-Poissonian distribution. In this case, the filling factor is 0.5 [13] and this filling factor is
used for all of the subsequent calculations throughout this work. To illustrate how the algorithm
works, figure 1(b)–(d) are selected as examples. In figure 1(b) the algorithm generates a random
distribution of an initial occupancy (O matrix). Afterward, it defines the filling layer shown in



figure 1(c). In this example, there are 6 layers labeled in numbers. Each layer has the same
value of Px,y. The algorithm starts its iteration loop from the smallest unfilled layer. Then it
seeks to fill the vacancies in the layer with the nearest-neighbor atoms from the nearest outer
layer. At this step, the algorithm aims to minimize the Ps parameter. After the first layer is
fully occupied, the next layer is considered. For an example as shown in figure 1(d), the vacancy
at position {2, 4} needs to be filled. From here, the atom located in the next layer, i.e. at {2, 5},
is selected because Ps is the most minimized comparing to the other nearest neighbor atoms in
the same layer. Finally, because the allowed trajectories for the atom is restricted to a move
along the edges between traps (the step size is one between adjacent traps), the algorithm may
need several steps until Ps reaches the minimum.

Figure 1. A schematic diagram of compactness maximization algorithm. From the flowchart
(a), initial loaded array is randomized as shown in (b) and then the algorithm defines filling layers
(shown in (c)) corresponding to each trap’s specific spatial property called Dx,y. To maximize
the compactness, the partially filled innermost layer is assigned to the lowest Dx,y. Once a
vacancy is found, the only one nearest neighbor atom that can minimize Ps =

∑
x

∑
y Px,y, as

shown in (d), is moved. From here, the algorithm tends to fill the inner vacancies with atoms
from outer layer where Dx,y is higher. (run over 500 loading samples)

3. Central occupancy evolution
In this section, the algorithm based on Ps as defined in equation (1), is applied to the array of
20×20 loading sites. The calculation repeats over k = 500 randomly loadedO matrices to inquire



about the averaged occupancy matrix, ⟨O⟩ =
∑k

i=1Oi/k. From figure 2, at an initial setup (0th
iteration), the average occupancy ⟨O(0)⟩ of the system is nearly 0.5 and equally distributed over
the loading sites. As the number of iterations increases to j, the average occupancy ⟨O(j)⟩
near the center of the array become higher and reach the saturated value of one, which is the
maximum obtainable averaged occupancy because each site can only trap zero or one atom.
After several iterations, the algorithm drive the system to form an x-shape pattern of saturated
occupancy around the center. This is because the atoms are allowed to move only in either the
x- or y- direction and the occupancy along the array’s diagonals are populated from the moves
in both directions. For a larger number of iterations, ⟨O⟩ gradually increases toward uniform
saturation, starting from the inner layer to the outer layer. The average occupancy is almost
depleted near the boundary, forming a circular pattern respective to the defined D matrix. This
compact round shape can be seen in the single-shot sample showing that all vacancies in the
inner layer are eliminated while there is no atom left in the outer layer. This demonstrates the
mass transportation driven by the algorithm from the wings toward the low Dx,y region around
the center of the system.

Figure 2. (a) Single-shot examples of O and (b) average occupancy matrices ⟨O⟩ for each
chosen number of iteration, showing compactness progression of a single-atoms array of 20×20
loading site, performed rearranging via Ps based algorithm for radial D.

4. Convergence of Ps parameter
In this section, the behavior of the algorithm based on Ps is established. The evolution of
Ps is shown in figure 3. Figure 3(a) shows that the average of Ps exponentially decreases
toward a saturated value as the number of iterations increases. This behavior agrees well with
figure 2 where the system’s compactness rises. For the 0th iteration, the initial Ps parameter is
calculated from the condition that the atom is randomly distributed. For the later iterations,
the value of Ps gradually decreases until it converges to a local minimum and the system reaches
local maximum of compactness. The ratio between the local maximum compactness Cl and the
theoretical compactness Cth is calculated as follows:

Cl
Cth

=
max(Ps)−min(Ps)

max(Ps)−min(P ′
s)
, (2)



where min(P ′
s) is the theoretical minimum of Ps. From the calculation of over 500 loading

samples, ⟨Cl/Cth⟩ = 0.97. The time constant τ of the decay is plotted in the insets inferring
that the saturation time depends on the the system size. This could be further explained in
figure 3(b) in which the inset shows the average of accumulated moves ⟨Ma⟩ for each iteration.
The value of ⟨Ma⟩ moderately increases until it reaches an asymptotic value, indicating that
the total number of the required moves for every atom in the system reaches the maximum
compactness. Meanwhile, the plot between the maximum averaged value of the accumulated
moves and the loading array’s size in the main plot in figure 3(b) shows a nonlinear trend. For
a larger loading array’s size, more moves are needed to compact the system. This agrees well
with a smaller decay rate for a larger array in figure 3(a).

Figure 3. Evolution of Ps and the effect of the system size. (a) The scaled Ps (from 0 to 1), P̃s,
is plotted as a function of number of iterations for different array sizes. In the plot, P̃s is scaled
with respect to the maximum value of Ps, max(Ps), and the local minimum, min(Ps), for each
array size condition. Thus P̃s does not show the discrepancy between min(Ps), and the expected
theoretical minimum, min(P ′

s). The inset shows the decay constant τ from the exponential fit,
plotted against the array lateral length N . (b) Maximum number of steps needed in the atom
rearrangement algorithm for different lateral array lengths. The inset shows an accumulated
number of moves, Ma, increasing for each iteration. The data are averaged over 500 samples
and each error bar represents one standard deviation, which is especially small in (b).

5. Arbitrary occupancy shaping
To demonstrate applicability of our algorithm, we provide three spatial distributions. In
particular, the arrangement of trap potentially implies different physics that experimenters
convey. In this section, to examine if the algorithm could give different trap configurations, three
different D matrices are used in the algorithm. Figure 4 shows the averaged occupancy matrices
⟨O⟩, the distribution matrices D and their line cross-section from left to right respectively. In
the same figure, from top to bottom row, the D matrices are radially linear distribution, radially
quadratic distribution and horizontal triangular distribution respectively. For the case of linear
and quadratic distribution, the averaged occupation matrices ⟨O⟩ are similar and have shapes
between a circular and a rectangular. This is because the algorithm restriction on the direction
of moves compresses O toward a rectangular shape at an early stage and stall at the local
maximum compactness as mentioned in section 4. Nonetheless, for the triangular D matrix, the
averaged occupancy drastically follow the triangular shape.



Figure 4. Averaged occupancy matrix ⟨O⟩ (a) and D matrix (b) after performing the algorithm
for three different Dx,y which alter the pattern of the layer structure. The cross section at y = 9
for each D matrix is shown in (c).

6. Conclusions
We propose the compactness maximization algorithm to rearrange atoms in a Cartesian array.
The algorithm works by filling atom layer by layer from the innermost layer (based on Ps) to the
outermost one while the averaged occupancy at the target region increases. The results shows
that the system compactness could be maximized up to ∼97% of the theoretical maximum. For
a larger array, more iteration is needed to reach the local maximum of compactness. Finally,
the D matrix could be arbitrarily designed to give a desired atom distribution.

Several tasks are required to improve the performance of the algorithm. The main tasks
relates to the optimization of moves and rearrangement time. In particular, coding efficiency and
the local minimum escape can be improved by allowing complex trajectories via a reinforcement
learning model.

References
[1] Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313–63
[2] Feynman R P 1982 Int. J. Theor. Phys. 21 467–88
[3] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86(3) 032324
[4] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413–18
[5] Sompet P, Carpentier A V, Fung Y H, McGovern M and Andersen M F 2013 Phys. Rev. A 88(5) 051401
[6] Carpentier A V, Fung Y H, Sompet P, Hilliard A J, Walker T G and Andersen M F 2013 Laser Phys. Lett.

10 125501
[7] Barredo D, Léséleuc S D, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021–3
[8] Ebadi S et al 2021 Nature 595 227–32



[9] Schymik K N, Lienhard V, Barredo D, Scholl P, Williams H, Browaeys A and Lahaye T 2020 Phys. Rev. A
102(6) 063107

[10] Kim H, Lee W, Lee H g, Jo H, Song Y and Ahn J 2016 Nat. Commun. 7 13317
[11] Lee W, Kim H and Ahn J 2017 Phys. Rev. A 95(5) 053424
[12] Sheng C, Hou J, He X, Xu P, Wang K, Zhuang J, Li X, Liu M, Wang J and Zhan M 2021 Phys. Rev. Res.

3(2) 023008
[13] Ohl de Mello D, Schäffner D, Werkmann J, Preuschoff T, Kohfahl L, Schlosser M and Birkl G 2019 Phys.

Rev. Lett. 122(20) 203601


