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Abstract. We investigate an alternative way to detect the gravitational wave using the
concept of Aharonov-Bohm experiment in curved space-time. Our system consists of an electron
beam which is split into two beams passing opposite sides of the solenoid and producing
interference patterns. The change in interference patterns can be observed if the system is
perturbed by the gravitational wave, and can be used to trace back to the nature of the
gravitational wave. This system is described by the cylindrical coordinate in Minkowski space-
time where we set the incoming wave propagating in the z-direction, perpendicular to the
solenoid’s cross-section. We found that the perturbation on the cross-section area due to
gravitational strength is not strong enough to significantly change the phase shift. Contrarily,
by changing the magnetic field generated by the current inside the solenoid, the results suggest
that the significant phase shift could potentially be detected if the gravitational wave is allowed
to propagate in the direction that is perpendicular to z-direction.

1. Introduction
The gravitational wave has been robustly detected for the first time in the stellar-mass binary
black hole merging, GW150914, by the Laser Interferometer Gravitational-Wave Observatory
(LIGO) in 2015 [1]. The measurement method of LIGO is based on the laser interferometry
technique to measure the strain of the displacement of two perpendicular arms connecting
to reflection mirrors, relating to the phase difference. Here, we investigate the gravitational
wave detection in an alternative way using the Aharonov-Bohm experiment which provides the
magnetic vector potential that can produce a specific interference pattern of the electron beams
[2] once perturbed by the gravitational wave. Due to its nature, the wave passes through the
earth with strength (h) weaker than 10−20 [3] and currently be detected with the minimum strain
∼ 10−21 that, when being treated as a weak perturbation from linearized theory [4], can slightly
affect the space-time continuum [5]. Hence, the change in the interference pattern would be
insignificant and difficult to be detected if the perturbation is beyond the first order. By setting
the magnetic field in the Aharonov-Bohm experiment to be uniform, the change of magnetic



Figure 1. The schematic of Aharonov-Bohm experiment with gravitational wave. See text for
more details.

flux and corresponding phase shift can be calculated from the change in the cross-section area
of the solenoid. We then test the coupling between the gravitational wave and electromagnetic
field from the variation of the current density using Maxwell’s equation in curved space-time [6].
The metric tensor carrying the information of the weak perturbation contains the variation term
that leads us to evaluate the potential use of this experimental set-up to detect the gravitational
wave.

2. Experimental model
In the Aharonov-Bohm experiment, the incoming electron beam traveling in the x-y plane can be
split into two beams passing opposite sides of the solenoid (figure 1). The solenoid is assumed
to have infinite length where the magnetic field is zero outside the solenoid. Therefore, the
magnetic vector potential A is only proportional to the magnetic field B inside the solenoid
circuit, hence ∇×A = B. The magnetic flux inside the solenoid circuit then can be written as

Φ =

∫
B · dS =

∮
A · dl , (1)

where S is the cross-section area of the solenoid and l is the path around the solenoid. Without
gravitational wave, the phase shift produced by the Aharonov-Bohm effect is suggested to be [2]

∆φ =
q

h̄

∫
B · dS =

q

h̄

∮
A · dl =

q

h̄
Φ . (2)

Since the gravitational wave perturbation influences the ripples in the geometry of space-
time, we employ a uniform magnetic field and observe the change in the path length and the
cross-section area due to the perturbation by the gravitational wave. This leads to the change
in the current density that, finally, allows us to quantify the change in phase shift when the
gravitational wave is present. In this case, we do not concern the interaction between each
particle, i.e., weak or strong force.

We employ the metric tensor g consisting of the Minkowski metric η in local flat space-
time and a weak perturbation h for the wave propagating in the vacuum in z-direction using
transverse-traceless gauge [4], having the polarization h+ and h× on the x-y plane [7]. Then,
the length L from point P to Q can be described by

L =

∫ Q

P

√
gµνdxµdxν =

∫ Q

P

√
(ηµν + hµν)dxµdxν . (3)



In cartesian coordinate, the metric tensor for the wave propagating in z-direction is

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos [ω(t− z/c)] . (4)

In cylindrical coordinate, using tensor transformation, the gauge is still transverse-traceless. The
metric tensor then becomes

gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 1

+


0 0 0 0
0 H+ rH× 0
0 rH× −r2H+ 0
0 0 0 0

 , (5)

where

H+(φ, t) = M sin(A+ 2φ) cos [ω(t− z/c)] ,
H×(φ, t) = M cos(A+ 2φ) cos [ω(t− z/c)] ,

M =
√
h2+ + h2× .

Furthermore, we define the initial length in x- and y-axis as Lx0 and Ly0, respectively. When
the effect of perturbation due to the gravitational wave is included (figure 2), we calculate the
cross-section area at a particular value of z and t.

Figure 2. The schematic of the change in the cross-section area in Aharonov-Bohm experiment
due to the gravitational wave perturbation.

The variation of current density j is evaluated via the derivative of metric tensor in case of
a uniform magnetic field. According to Maxwell’s equations in curved space-time [6], we can
write

jν =
1√

−det(g)
∂µ[
√
−det(g)gµρgνσFρσ] (6)

=
1

r
∂µ[rgµρgνσFρσ] , (7)

where Fρσ is the electromagnetic strength tensor in cylindrical coordinate. For the infinite length
solenoid, we do not consider the point charge and leave the current alone, so the electric field is
negligible due to the uniform magnetic field configuration.



3. Result and discussion
To calculate the change in the cross-section area shown in figure 2, we multiply the proper length
from two axes given in the cartesian coordinate (x,y)

Lx = Lx0{1 + h+ cos [ω(t− z/c)]}
1
2 , (8)

Ly = Ly0{1− h+ cos [ω(t− z/c)]}
1
2 , (9)

to estimate the cross-section area, from equations (8) and (9),

S = LxLy = Lx0Ly0 +O(h2) . (10)

The result shows that the difference between perturbed and unperturbed cross-section is in
the order of h2, which is negligible in the linearized theory. However, more precise calculations
can be done by taking into account the cross polarization in the surface integral, but the results
are not significantly different from our estimation here.

Furthermore, in cylindrical coordinate, we set the solenoid’s radius r to be constant. Then,
Maxwell’s equation for fields which are constant in time with the gravitation effect can be
expressed in terms of

jrh =
1

r2
∂φ
[
(1−H2

×)Bz
]
− ∂z

[
(1−H+)Bφ

]
+

1

r
∂z(H×Br) , (11)

jφh = −1

r
∂r
[1
r

(1−H2
×)Bz

]
+

1

r2
∂z
[
(1 +H+)Br

]
+

1

r
∂z(H×Bφ) , (12)

jzh =
1

r
∂r
[
(1−H+)rBφ

]
+

1

r
∂r(H×Br)−

1

r2
∂φ
[
(1 +H+)Br

]
+

1

r
∂φ(H×Bφ) , (13)

while the variation of current density in each dimension without non-gravitational effect is

jr∗ = − 1

r2
∂φ(H2

×Bz)− ∂z(H+Bφ) +
1

r
∂z(H×Br) , (14)

jφ∗ =
1

r
∂r(

1

r
H2

×Bz) +
1

r2
∂z(H+Br) +

1

r
∂z(H×Bφ) , (15)

jz∗ = −1

r
∂r
(
H+rBφ) +

1

r
∂r(H×Br)−

1

r2
∂φ(H+Br) +

1

r
∂φ(H×Bφ) . (16)

Note that we discard the term that shows the second order of H2 in gµρgνσ. As a result, all
terms of each current density equation show no presence of Bz, hence the variation due to the
perturbation in this way is approximately be zero.

On the other hand, by changing the orientation of the solenoid so that the wave propagation
is tangent to the cross-section area, i.e. fixes x-axis and rotates 90◦degree from the original
z-direction, the perturbation is occurred only in one direction of the solenoid’s cross-section as
shown in figure 3. The perturbed area then becomes

S =

∫ ∫
√
gxxgzz dxdz =

∫ ∫ √
1 +O(h) dxdz ≈ Lx0Lz0 [1 +O(h)]

1
2 . (17)

Consequently, some of the metric tensor multiplication terms can be in the order of h which,
in turn, allow the variation of the current density. Under this configuration, the significant phase
shift should potentially be detected, which will be investigated further in the future.



Figure 3. The schematic of the solenoid, rotating 90◦ from the original z-direction.

4. Conclusion
Our calculations show that the change in phase shift induced by the perturbation on the cross-
section area due to the gravitational strength is not significant, especially if the gravitational
wave is travelling along the z-direction. This system, instead, could be used to detect
gravitational wave travelling in the tangent direction to the solenoid cross-section area.
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