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Abstract. Understanding of exoplanet atmospheres can be extracted from the transmission
spectra using an important tool based on a retrieval technique. However, the traditional retrieval
method (e.g. MCMC and nested sampling) consumes a lot of computational time. Therefore,
this work aims to apply the random forest regression, one of the supervised machine learning
technique, to retrieve exoplanet atmospheric parameters from the transmission spectra observed
in the optical wavelength. We discovered that the random forest regressor had the best accuracy
in predicting planetary radius (R2

Fit = 0.999) as well as acceptable accuracy in predicting
planetary mass, temperature, and metallicity of planetary atmosphere. Our results suggested
that the random forest regression consumes significantly less computing time while gives the
predicted results equivalent to those of the nested sampling PLATON retrieval.

1. Introduction
Characterization of planetary atmospheres is a rapidly developing area in the exoplanet field.
Transmission spectroscopy is the method commonly used to study exoplanetary atmospheres
by measuring the variation of transit depths with wavelengths that depends on properties of
elements in the planetary atmosphere [1]. The characteristics of the exoplanet’s atmosphere can
be obtained from the atmospheric retrieval process. However, the traditional retrieval processes
(e.g. MCMC [2] and nested sampling [3]) is a time-consuming procedure. In order to reduce the
computational time, machine learning techniques have been implemented for retrieving exoplanet
atmosphere parameters. For example, random forest regression, a supervised machine learning
technique, has previously been used to approximate the variables of an exoplanet’s atmosphere
using Hubble Space Telescope Wild Field Camera 3 data (WFC3) [4].

In this paper, random forest regression is employed to retrieve atmospheric properties
from simulated photometric observational data of hot Jupiters. The PLanetary Atmospheric
Transmission for Observer Noobs (PLATON) is used to generate exoplanetary transmission spectra
[5]. The spectra then are weighted with the filter transmissions. The atmospheric parameters



are estimated using random forest regression model in python scikit-learn package [6]. The
results are compared with those obtained from nested sampling retrieval in PLATON. The workflow
is illustrated in figure 1.

Figure 1. The flowchart for retrieving exoplanet atmospheric parameters from the synthetic
transmission spectra in the optical wavelength using a random forest regressor.

2. Synthesize transmission spectra
In this work, only hot Jupiters, gas giant exoplanets with very short orbital periods (P < 10
days), are focused [7]. We investigated five atmospheric parameters including planet mass (Mp),
planet radius (Rp), planet atmosphere temperature (T ), metallicity of planetary atmosphere
(logZ), and atmospheric carbon to oxygen ratio (C/O). PLATON forward model is used to
generate 100,000 hot Jupiter transmission spectra, by uniformly, randomly selecting the values
of these parameters within the range shown in table 1. The adopted planetary mass and radius
values are within 68 and 95 confident intervals of the mass-radius relationship of the Jovian
exoplanets, respectively [8]. The planets are assumed to orbit a solar-analog star.

Table 1. The input parameters for generating the spectra using the transit depth calculator
module in PLATON. Note that Mp is in Jupiter mass (MJ) and Rp is in earth radius (R⊕).

Parameters Value References

Planetary mass (Mp) 0.3MJ – 3MJ [9, 8]
Planetary radius (Rp) 8R⊕ – 20R⊕ [10, 8]
Planetary atmospheric temperature (T ) 1300 – 3000 K [11]
Metallicity of planetary atmosphere (logZ) -1 – 3 [5]
Atmospheric Carbon-Oxygen ratio (C/O) 0.35 – 1 [5]

To date, a number of transit observations are performed from the ground using broad-
band optical filters. In this work, The five Johnson-Cousins (U, B, V, R, I) and five Sloan
(u′, g′, r′, i′, z′) optical filters are selected. To synthesize transmission spectra of optical
observations, the transmission curve of the filters are used to weight the transmission spectra
simulated from PLATON, as shown in figure 2. The Johnson-Cousins transmission curves are
obtained from photometric transmission curves class in PyAstronomy package [12]. The Sloan



filter profile is obtained from Sloan Digital Sky Survey Data Release 7 (SDSS Data Release
7: http://classic.sdss.org/dr7/instruments/imager/#filters). The weighted transmission curves
are used as the transit depths that could be obtained from the corresponding filters.

(a)

(b)

Figure 2. A synthesized transmission spectrum (red) obtained by simulated transmission
spectra from PLATON (turquoise) weighted by the transmission curve of the filters (b).

3. Random forest regressor
In this work, the random forest regression is used to retrieve transmission spectra. From 100,000
synthetic transmission spectra of 10 Johnson-Cousins and Sloan filters, the spectra were split
into two groups: 80,000 for training and 20,000 for testing. Ten binned transit depths are
the model features while five planetary parameters (Mp, Rp, T , logZ and C/O) are the labels.
The hyper-parameters tuning is performed using the GridSearchCV package in scikit-learn to
optimize the appropriate values of the number of trees (number of estimators) and the maximum
depth of each tree [6]. The best cross validation score is R2 = 0.5949 for the maximum depth of
320 and the number of estimators of 2,560 (figure 3), hence these values are used in our regressor
model to predict the planetary parameters from 20,000 spectra in our test data set.

The comparisons between real and guess values of five atmospheric variables are shown in
light blue points in figure 4. Their coefficients of determination (R2

Fit) are reported in table 2.
The model has the best accuracy in predicting Rp with R2

Fit of 0.999 and moderate accuracy
in predicting Mp, T , and logZ with R2

Fit of 0.742, 0.571 and 0.638, respectively. However, the
model cannot predict the C/O ratio as the transmission features induced by the C/O variation
are not significant enough in the optical bands.

4. Comparing results with the PLATON retrieval model
The results from our random forest regressor model is compared to those obtained from the
nested sampling fitting model in the PLATON. A sample of 100 spectra is simulated and retrieved



with the PLATON. The number of live points in nested sampling model are selected to be 50
and 100. In order to compare the computaional time, all models perform on a machine with a
Core i9-10900 CPU and 32GB of RAM that runs Ubuntu 18.04.2 LTS. The results are shown
in figure 4 and table 2. The random forest regressor performs 160,000 and 270,000 times faster
than the PLATON nested sampling model with 50 and 100 live points, respectively. Judging by
R2

Fit, the accuracy obtained from the regressor model are comparable to that of the PLATON

retrievals.

Figure 3. Cross validation score (R2) obtained from hyper-parameter tuning using
GridSearchCV package.

Table 2. Performance of our random forest regressor model compared to that of the PLATON

retrievals with 50 and 100 live points. Note that the models are run on a machine with a Core
i9-10900 CPU and 32GB of RAM that runs Ubuntu 18.04.2 LTS.

Approach Data sets Time spent Coefficient of determination (R2
Fit)

(Hr:Min:Sec) Mp Rp T logZ C/O

Random forest regressor 20,000 0:0:14 0.742 0.999 0.571 0.638 0.129
PLATON (nlive=50) 100 3:12:8 0.780 0.999 0.546 0.659 -0.842
PLATON (nlive=100) 100 5:16:45 0.791 0.999 0.616 0.591 -0.604
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Figure 4. Real and predicted values of five planetary parameters: (a) planetary mass, (b)
planetary radius, (c) planetary atmospheric temperature, (d) metalicity of planetary atmosphere
and (e) Carbon to Oxygen ratio in the atmosphere, of 20,000 test set using random forest
regressor (lightblue), the PLATON nested sampling retrival with number of live points of 50
(blue) and 100 (green). The red dashed lines show prefect prediction lines.



5. Conclusion
Transmission spectra of hot-Jupiter atmosphere are simulated using PLATON package. The
spectra are weighted with 10 Johnson-Cousin and Sloan filter profiles. The random forest
regressor are used to estimate five planetary parameters: Mp, Rp, T , logZ and C/O. The
model provides the best cross validation score when the number of estimators is 2560 and
the maximum depth is 320. The regressor can precisely predict the planetary radius with
R2

Fit = 0.999 and has intermediate accuracy in predicting Mp, T , and logZ values because
of the planetary radius can be retrieved using the baseline of transit depths, while the other
characteristics can be retrieved from the transit depth features in the specific filters. However,
the model cannot predict the C/O correctly because different values of this parameter produce
very small variation in optical spectra. We conclude that the random forest regressor can be
used to estimate planetary parameters from optical transmission spectra with the prediction
accuracy approximately as same as that of the traditional retrieval method, but with more than
100,000 times faster.
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