Low-energy physics overview

Yusuke Koshio (Okayama university, Japan)

December 9, 2020, Workshop 'NA61/SHINE at Low Energy', Online

Why low energy beam? Need for various types of neutrino experiments

Neutrino flux determination is critical

Why low energy beam? How to make neutrinos?

Neutrino flux determination is critical

Why low energy beam?

Hadron production uncertainty is serious problem

Precise hadron interaction data of low energy hadron beam with wide acceptance detector is not enough!

Brief introduction of physics program

(J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

Several anomalies,

indication of a sterile neutrino ($\Delta m^2 \sim 1 eV^2$)?

JSNS² experiment

Search for sterile neutrino

Experiment	Neutrino source	signal	Significance	E(MeV) / L (m)	
LSND	μ DAR	$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	3.8 <i>σ</i>	40 / 30	
MiniBooNE	π Decay in Flight	$ u \mu \rightarrow \nu_e $	4.7 σ	800 / 600	
		combined	4.8 <i>σ</i>		
Ga (calibration)	e capture	$\nu_{e} \rightarrow \nu_{x}$	2.7 σ	<3 / 10	
Reactor	Beta decay	$\overline{\nu_{e}} \rightarrow \overline{\nu_{x}}$	3.0 <i>σ</i>	3 / 10~100	

Finally, solve the long standing problem

 $(\Delta m^2, \sin^2 2\theta) = (0.043 \text{ eV}^2, 0.807)$ $\chi^2/ndf = 21.7/15.5 \text{ (prob} = 12.3\%)$

 $(\nu + \bar{\nu})$

J-PARC Facility

JSNS² experiment

JSNS² experiment Neutrino⁵ Source and detection

S. Hasegawa

JSNS² experiment Neutrino Source and detection S. Hasegawa H2 low-E beam line meeting No data of 3GeV proton July 9, 2020 injected mercury. LS detector Need to cross-section of 3GeV Prompt Proton + Mercury target. Signal Beam stopper Flow Vanes e × Target Cell

ve

Proton

Neutro

(n)

(p)

 $\overline{v_{u}}$

24m

 π^+

Vu

Neutron Beam

Proton

Beam

Hq

e⁺

Gd

Delayed

8

Signal

γ

10

JSNS² experiment Neutrin Source and detection S. Hasegawa H2 low-E beam line meeting No data of 3GeV proton July 9, 2020 injected mercury. LS detector

Need to cross-section of 3GeV

Proton + Mercury target.

Need the data as soon as possible.

COHERENT experiment First Experiment Observation of CEvNS

Coherent elastic neutrino-nucleus scattering (CEvNS)

A neutrino scatters on a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

CEvNS cross section is well calculable in the Standard Model

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$
CEvNS cross section is large!

LOAK RIDGE

- Predicted in 1974 by D. Freedman
- Interesting test of the standard model
 - Sensitive to non-standard interactions
 - Largest cross section in **supernovae** dynamics
 - Background for future **dark matter** experiments
 - Sensitive to nuclear physics, neutron skin (neutron star radius)
- "act of hubris" D. Freedman
 - Need a low threshold detector
 - Need an intense neutrino source

Neutrino 2020 Virtual Meeting

J. Newby

Neutrino 2020 June 23, 2020

COHERENT experiment First Detection!

First Detection of CEVNS with CsI detector

J. Newby Neutrino 2020 June 23, 2020

COHERENT experiment Spallation Neutron Source at ORNL

J. Newby Neutrino 2020 June 23, 2020

COHERENT experiment What is the uncertainty?

J. Newby Neutrino 2020 June 23, 2020

Beyond First Light Measurements ... CEvNS as quantitative probe

Dominant Uncertainties on Csl signal	
Event selection (signal acceptance)	5%
Form Factor	5%
Neutrino Flux	10%
Quenching factor	25%
Total uncertainty on signal	28%

Dominant Uncertainties on Ar CEvNS Rate	
Detector Model (includes QF)	2%
Fiducial Mass	2.5%
Prompt Light Fraction (Pulse Shape)	8%
Neutrino Flux	10%
Total uncertainty on signal	13.4%

All uncertainties except neutrino flux are detector specific and could be much less for other technologies

- Largest uncertainty is pion production from p+Hg
- 10% discrepancy between Bertini and LAHET calculations

To unlock high precision CEvNS program, we need to calibrate the SNS neutrino flux.

Neutrino 2020 Virtual Meeting

COHERENT experiment What is the uncertainty?

Beyond First Light Measurements ... CEvNS as quantitative probe

	Dominant Uncertainties on CsI signal		Fragments ~99% Capture			
	Event selection (signal acceptance)	5%				
	Form Factor	5%	$(\mathbf{P}) \longrightarrow (\mathbf{Hg}) \xrightarrow{\mathbf{Decays}} \mathbf{at Rest} (\mathbf{r} \approx 26 \text{ ns}) \xrightarrow{\mathbf{\mu}} \xrightarrow{\mathbf{Decays}} \mathbf{at Rest} (\mathbf{r} \approx 2.2 \mu \text{s})$			
	Neutrino Flux	10%	Fragments			
	Quenching factor	25%	μ (v _μ)			
	Total uncertainty on signal	28%	Largest uncertainty is pion production from p+Hg			
Dominant Uncertainties on Ar CEvNS Rate			10% discrepancy bet Bertini and LAHEI calculations Average interaction depth ~11 Average interaction energy is ~1.1 GeV			
	Dominant Uncertainties on Ar CEvNS Ra	te	Average interaction depth ~1 Average interaction energy is ~1.1 GeV			
_2	Dominant Uncertainties on Ar CEVNS Ra	inty	Average interaction depth ~1 Average interaction energy is ~1.1 GeV			
_(Dominant Uncertainties on Ar CEVNS Ra argest uncerta Prompt Light Fraction (Pulse Shape)	inty 8%	Average interaction depth ~1 Average interaction energy is ~1.1 GeV			
_(Dominant Uncertainties on Ar CEVNS Ra argest uncerta Prompt Light Fraction (Pulse Shape) Neutrino Flux	inty 8% 10%	Average interaction depth ~11 Average interaction energy is ~1.1 GeV			
_(Dominant Uncertainties on Ar CEVNS Ra argest uncertaint Prompt Light Fraction (Pulse Shape) Neutrino Flux Total uncertainty on signal	8% 10% 13.4%	Average interaction depth ~1 Average interaction energy is ~1.1 GeV			

To unlock high precision CEvNS program, we need to calibrate the SNS neutrino flux.

Neutrino 2020 Virtual Meeting

COHERENT experiment Future plan

Power Upgrade and STS Facility create new opportunities ...

FTS	2021	2022	2024	2028 STS Neutrino Hall		
1.4 MW Cale	orimetry	1.7 MW	2.0 MW	FTS: 2.0 MW @ 45 Hz STS: 0.7 MW @ 15 Hz		
 COHERENT "First Light" Program CEvNS with HPGe, Nal Heavy Water Flux Normalization of FTS Ton-Scale Argon Calorimetry CEvNS studies Dark Matter searches Limits on quark-lepton couplings for DUNE mass ordering degeneracy Low Threshold Detector R&D: Quantum Enhanced Light Collection, Xenon Doping, SiPM Supernovae neutrino cross sections for DUNE 		t" Program	Directionality			
		I nalization of FTS	Ton-Scale Directionality with Low	Discovery Scale		
		imetry couplings for DUNE mass r R&D: Quantum ion, Xenon Doping, SiPM ross sections for DUNE	 Heavy Water Ring Imaging Design Improved Flux Normalization v_e-oxygen Interactions for Super-K, Hyper-K Argon Detector R&D for STS Scalable Low threshold Light Collection Advanced Techniques for Position/Direction Reconstruction Direction reconstruction for CC-leptons Multi-site reconstruction for coherent 	Neutrino Program at STS 10-ton Liquid Argon • Dark Matter searches • Precision CEvNS studies • Precision Ar cross sections for DUNE • Weak Mixing Angle • Neutrino EM properties Heavy Water Ring Imaging		
		SPATIATION WEDTON SOURCE	inelastic interactions	• Flux Normalization of STS • Precision v_e -oxygen for Super-K, Hyper-K		
We a	ire just getting	g started!	Exact time evolution of prog determined by the colla	gram to be poration		
CAK F	RIDGE Laboratory	1	Neutrino 2020 Virtual Meeting	J. Newby		

J. Newby

Neutrino 2020 June 23, 2020

Fermilab Booster Neutrino Beam Short baseline neutrino experiment / neutrino interaction

- Several experiments are on going and planned. (ANNIE, MicroBooNE, MiniBooNE, MITPC, SciBath, ICARUS, SBND)
- Neutrino interaction cross section with Argon is important for DUNE.

Precise neutrino flux measurement is critical

T2K Long baseline neutrino experiment in Japan

19

P. Dunne

Neutrino 2020 July 2, 2020

T2K

T2K Neutrino oscillation / interaction measurement

T2K Neutrino flux prediction

• Allows significant reduction in input flux uncertainty on SK rate from ~8% to ~5%

T2K Neutrino flux prediction

Still ~10% untuned from target C and exiting, decay pipe Fe, Horn Al. still ~10% of hadronic interaction are untuned

Hyper-Kamiokande Next generation experiment (2027~)

10 years (10yrs×1.3MW×10⁷s), v : vbar = 2.5yrs : 7.5yrs

Control of systematics (neutrino flux, interaction, detector) is crucial.

M. Mooney

25

- "Deep Underground Neutrino Experiment"
 - 1300 km baseline
 - Large (70 kt) LArTPC far detector 1.5 km underground
 - Near detector w/ LAr component

- Primary physics
 ν oscillations
 ν_e/ν_e appearance)
 - $\boldsymbol{\delta}_{CP}, \boldsymbol{\theta}_{23}, \boldsymbol{\theta}_{13}$
 - Ordering of v masses
 - Supernova burst neutrinos
 - BSM processes (baryon number violation, NSI, etc.)

~1,000 ν_{e} events in 7 years (staged)

Atmospheric neutrino Flux measurement

Predicted atmospheric neutrino flux is important for neutrino oscillation and other physics as a background for Dark Matter, Supernova neutrinos, etc.

Atmospheric neutrino Why hadronic interaction?

- Develop hadronic shower, and the decay of the pions and muons give neutrinos.
- Energy of neutrinos O(10)MeV to O(10)TeV, and the flight length before detection is 10-10,000 km. It makes wide ranges of L/E.
- Both neutrinos and antineutrinos in the flux.

The predicted flux uncertainty of π and K in the air is a dominant error sources

Atmospheric neutrino Available beam data for input

p _{beam} [GeV/c]	3	5	6.4	8	12	12.3	17.5	31
p+Be	HARP π±	HARP π±	E910 π±	HARP π±	HARP π±	E910 π±	E910 π±	
p+C	HARP π±	HARP π±		HARP π±	HARP π±			NA61 π±,K±,p
p+Al	HARP π [±]	HARP π [±]		HARP π [±]	HARP π [±]			

HARP : 3,5,8,12 GeV, p+ (Be,C,AI,Cu) $\rightarrow \pi^+$ + X

(Forward) Phys.Rev.C80, 035208 (2009) *(Large Angle)* Eur. Phys. J. C 53, 177–204 (2008) *(Large Angle)* Eur. Phys. J. C 54, 37–60 (2008)

BNL E910 : 6.4, 12.3, 17.5 GeV, p+ (Be,Cu,Au) → π+ + X

(Forward) Phys. Rev. C 77, 015209 (2008) (Large Angle) Phys. Rev. C 65, 024904 (2002)

NA61/SHINE : **31 GeV**, $\mathbf{p} + \mathbf{C} \rightarrow \pi$, \mathbf{K} , $\mathbf{p} + \mathbf{X}$ Eur Phys. I. C. 76, 94 (2016)

Eur. Phys. J. C 76, 84 (2016)

K. Sato H2 low-E beam line meeting October 30, 2020

HARP coverage in p- θ plane:

- forward: $p > 0.5 \text{ GeV/c}, \theta < 0.25 \text{ rad}$
 - binning is rough
- large-angle: $p < 0.8 \text{ GeV/c}, \theta > 0.35 \text{ rad}$

Need low energy proton data with wide acceptance

Summary

- Various neutrino physics programs seriously need for data of low energy hadron beam with several targets.
- In a timely manner seems to be important:
 - On going projects (~middle of 2020's) need it as soon as possible.
 - Data after long shutdown 3 is also important for long term projects
- Promising new discovery for neutrino physics coming next decade, but precise hadron interaction data is crucial.