JSNS2 Experiment

Shoichi Hasegawa (JAEA; Japan Atomic Energy Agency)
for JSNS2 group
Introduction

• Anomalies ($\Delta m^2 \sim 1\text{eV}^2$) have never been understood for ~20 years are shown

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Neutrino source</th>
<th>signal</th>
<th>type</th>
<th>Significance σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSND</td>
<td>μ Decay-At-Rest</td>
<td>$\bar{\nu}_\mu \rightarrow \bar{\nu}_e$</td>
<td>appearance</td>
<td>3.8</td>
</tr>
<tr>
<td>MiniBooNE</td>
<td>π Decay-In-Flight</td>
<td>$\nu_\mu \rightarrow \nu_e$</td>
<td>appearance</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{\nu}_\mu \rightarrow \bar{\nu}_e$</td>
<td>appearance</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>combined</td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>Ga(calibration)</td>
<td>e capture</td>
<td>$\nu_e \rightarrow \nu_X$</td>
<td>disappearance</td>
<td>2.7</td>
</tr>
<tr>
<td>Reactors</td>
<td>Beta decay</td>
<td>$\bar{\nu}_e \rightarrow \bar{\nu}_X$</td>
<td>disappearance</td>
<td>3.0</td>
</tr>
</tbody>
</table>

• The hidden oscillation between active and 4th neutrino?
 \rightarrow Sterile neutrino
LSND Anomaly

LSND $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ Signal

800 MeV proton beam from LANSCE accelerator

Water target
Copper beamstop

LSND Detector
L=30m

$\pi^+ \rightarrow \mu^+ \nu_\mu$

$e^+ \nu_e \bar{\nu}_\mu$

Oscillations?

$\bar{\nu}_e$

Saw an excess of:
$87.9 \pm 22.4 \pm 6.0$ events.

With an oscillation probability of
$(0.264 \pm 0.067 \pm 0.045)\%$.

3.8σ evidence for $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$

Los Alamos Meson Physics Facility, LANL 1993-1998

JSNS2 experiment ; Direct test of the LSND result with modern technics
JSNS2 experiment

JSNS2 (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

- Neutrino; μ^+(Decay at Rest) → $e^+ + \nu_e + \overline{\nu}_\mu$
- Target volume; Gd-loaded Liquid Scintillator
- Detection; IBD (Inverse Beta Decay)
- Baseline; 24m
- Beam: 3GeV Proton, 600kW Pulsed beam
- 10inch PMT x 120 (96 target, 24 Veto)
JSNS2 Collaboration

10th Collaboration meeting at J-PARC(2020/Feb)

63 collaborators
Spokesperson
T. Maruyama (KEK)
Co-spokesperson
S. B. Kim (SKKU)

6 institutions
27 members
JAEA
KEK
Kitasato U
Kyoto U
Osaka U
Tohoku U

10 institutions
28 members
Chonbuk National U
Chonnam National U
Dongshin U
GIST
Kyungpook U
Seoul U
Seoul National U of Sci & Tech
Soongsil U
Sungkyunkwan U

4 institutions
7 members
Alabama U
BNL
Florida U
Michigan U

1 institutions
1 members
Sussex U
Experimental Site, J-PARC

J-PARC Facility (KEK/JAEA)

Rapid Cycle Synchrotron
Energy: 3 GeV
Repetition: 25 Hz
Design Power: 1 MW

Main Ring
Energy: 30 GeV
Design Power: 0.75 MW

Materials and Life Experimental Facility

Neutrino Beams (to Kamioka)

181 MeV Linac
400 MeV
3 GeV RCS

CY2007 Beams
JFY2008 Beams
JFY2009 Beams

Bird’s eye photo in January of 2008
MLF: Neutron and Muon source for Material and Life Science

J-PARC Spallation Neutron Source
Experimental set-up

MLF Cut model around Hg target

JSNS2 detector

MLF 3rd Floor

Neutrinos 24m

MLF 1st Floor

3GeV Proton

Hg position
Neutrino; source and detection

Fig. 2.2.3: Schematic drawing of mercury target structure

Fig. 2.2.4: Schematic drawing of mercury target structure without the safety hull

Hg Target Cell

Proton Beam

Neutron Beam

Hg

ν
µ
π+
µ+
νµ

24m

Proton (p)

Neutron (n)

Gd

Prompt Signal

Delayed Signal

γ
νe
π+
µ+
νµ

e+
νe

γ

LS detector
Status of experiment

• Detector construction

• Stainless tank was built at HENDEL building in J-PARC.

• Acrylic tank was built in Taipei and delivered to HENDEL.

• PMTs were mounted in side frame. Acrylic install in stainless tank.
Status of experiment

• 2020/02/19 & 20 Detector transport and set in MLF
Status of experiment

- 2020/06/05 – 6/15
 JSNS\(^2\) 1\(^{st}\) physics run

Total charge vs time

\(^{252}\text{Cf}\) source calibration

The detector performed as expected and recorded a variety of data.
Neutrino flux from mercury target

- No data; 3 GeV proton injected mercury.

Proton Beam

Hg

\(\pi^+ \)

\(\mu^+ \)

\(\bar{\nu}_\mu \rightarrow \bar{\nu}_e \)

24m

\(\mu^- \)

\(\bar{\nu}_e \)

\(\pi^- \)

JSNS\(^2\) target

- To measure \(\mu^+ \) decay, \(\nu_e + C \rightarrow e + N_{gs} \)

It can reduce error of flux (10%)

JSNS\(^2\) Background

- No calibration with measurement (50%)

If error can reduce to 10%, Sensitivity is improved greatly

Energy (MeV)

Events/4MeV

0 10 20 30 40 50 60

50%

10%

LSND 99% C.L

LSND 90% C.L

50%

JSNS\(^2\) best case

Total

\(\bar{\nu}_e \) from \(\bar{\nu}_\mu \) oscillation

\(\nu_e \) from \(\mu^- \)

\(^{12}C(\bar{\nu}_e,e)N_{gs} \)

Accidentals

0 5 10 15 20 25 30 35 40

0 10 20 30 40 50 60

Energy (MeV)
Various MCs are studied

- **FLUKA** (current default)
 - Targe simulation only
 - Applied G4 rate
- **Geant4**
 - V9.4p04 with QGSP_BERT
- **PHITS**
 - Most precise geometry
 - Default MLF design
 - Different beam profile ($\sigma_x=18\text{mm}, \sigma_y=0.8\text{mm}$)

$\Rightarrow 1.3-1.7$ times difference is obtained as MC uncertainty

Motivation 1 to join NA61/SHINE low-E beamline

Comparison of MC Models

<table>
<thead>
<tr>
<th>FLUKA</th>
<th>$\pi^+ \rightarrow \mu^+ \rightarrow \nu_{\mu}$</th>
<th>$\pi^- \rightarrow \mu^- \rightarrow \nu_{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π/p</td>
<td>6.49×10^{-1}</td>
<td>4.02×10^{-1}</td>
</tr>
<tr>
<td>μ/p</td>
<td>3.44×10^{-1}</td>
<td>3.20×10^{-3}</td>
</tr>
<tr>
<td>ν/p</td>
<td>3.44×10^{-1}</td>
<td>7.66×10^{-4}</td>
</tr>
<tr>
<td>ν after 1μs</td>
<td>2.52×10^{-1}</td>
<td>4.43×10^{-4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geant4</th>
<th>$\pi^+ \rightarrow \mu^+ \rightarrow \nu_{\mu}$</th>
<th>$\pi^- \rightarrow \mu^- \rightarrow \nu_{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π/p</td>
<td>5.41×10^{-1}</td>
<td>4.90×10^{-1}</td>
</tr>
<tr>
<td>μ/p</td>
<td>2.68×10^{-1}</td>
<td>3.90×10^{-3}</td>
</tr>
<tr>
<td>ν/p</td>
<td>2.68×10^{-1}</td>
<td>9.34×10^{-4}</td>
</tr>
<tr>
<td>ν after 1μs</td>
<td>1.97×10^{-1}</td>
<td>5.41×10^{-4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHITS</th>
<th>$\pi^+ \rightarrow \mu^+ \rightarrow \nu_{\mu}$</th>
<th>$\pi^- \rightarrow \mu^- \rightarrow \nu_{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π/p</td>
<td>6.93×10^{-1}</td>
<td>8.02×10^{-1}</td>
</tr>
<tr>
<td>μ/p</td>
<td>4.46×10^{-1}</td>
<td>2.76×10^{-2}</td>
</tr>
<tr>
<td>ν/p</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ν after 1μs</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Need to cross-section data of 3GeV Proton + Mercury target
MLF measure the neutron flux from MLF target with thin metal plate. JAEA-Data-Code-2015-033

Neutron flux from Hg target

Length : 2m
Front 0.29(width) x 0.1(Height) m
Motivation 2 to join NA61/SHINE low-E beamline

- The activities of the radioactive products were measured using Ge detector.

- Because of the time required for removal, only a relatively long half-life response can be measured.

- Self shield effect of mercury is large.

- Estimated results were in agreement within ±30%

- MLF want to measure neutron production with thin mercury target.

- For 2nd MLF plan, MLF group want to know rate of Neutron production with mercury in detail. And if possible we want to measure Neutron production with Tw
Idea

• Beam condition
 Proton beam: 1, 3, 5, 7, 10 GeV

1) JSNS2 Neutrino Flux
 - P + Hg → π, K cross section
 Using NA61 detector
 + thin Hg target (3 type)

2) MLF Neutron production
 - Set film around target. Then
gamma spectrum of activated
film is measured with our
Ge-detector
 - Set neutron detector if event rate
is low.
Summary

- JSNS2 is a new experiment of the sterile neutrino search at MLF, J-PARC. JSNS2 is a direct test of the LSND result.

- JSNS2 detector was finished to construct, fill LS and set in MLF on June.

- JSNS2 experiment started 1$^{\text{st}}$ physics run. 2$^{\text{nd}}$ physics run will start from Dec to June 2021.

- For the improvement of physics and facility quality, JSNS2 want to take data using 3 GeV proton beam with mercury.