Presentation Outline

1. COHERENT and CEvNS

2. SNS Flux Simulations

3. Model validation efforts

Impact of a NA61/SHINE Low-E Beamline on the COHERENT experiment

Rebecca Rapp Carnegie Mellon University for the COHERENT collaboration Wednesday, December 9, 2020

Coherent elastic neutrino-nucleus scattering (CEvNS)

- \diamond Standard Model result: neutral-current process predicted in 1974
- \diamond No nuclear excitations, no changes to the neutrino or nucleus
- Only observable signature is the resulting nuclear recoil
- Experimental needs originally phrased as "an act of hubris":
	- \triangleright Intense source of neutrinos to combat the interaction rate
	- . Sensitivity to detect low-energy nuclear recoils (∼10 keV)
	- . Well-understood backgrounds to reject non-CEvNS events

PHYSICAL REVIEW D

1 MARCH 1974

VOLUME 9. NUMBER 5 Coherent effects of a weak neutral current

Daniel Z. Prendman! Nettenal Accolemeter Laboratory, Batasia, Slimois 6451/ ontoma seconorator Lanoratory, natured, nimese 60010
and hutlitute for Theoretical Physics, State University of New York, Stany Brook, New York 11790 Corporation in Concession, and the concession opportunity of the company of the Corporation of the Corporati

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

CEvNS Physics

$$
\sigma \approx \frac{G_{\!F}^2 N^2}{4\pi} E_{\nu}^2
$$

- \Diamond Flavor-blind interaction, with $qR < 1$
- \diamond Maximum recoil energy: $T_{\text{max}} = 2E_{\nu}^2/(M + 2E_{\nu})$
- \Diamond Broad physics reach: SM tests, nuclear structure, ν properties, etc.
- \diamond Motivates detector R&D, quenching factor measurements, etc.

Word cloud from M. Caddedu (Magnificent CEvNS 2020)

Rebecca Rapp (Carnegie Mellon University) [NA61/SHINE Low-E Beamline impact on COHERENT](#page-0-0) 9 December 2020 3/21

The COHERENT Collaboration

- \diamond Formed 2013 to unambiguously measure CEvNS
- \Diamond 20 institutions in USA, Canada, Russia, and South Korea

Rebecca Rapp (Carnegie Mellon University) [NA61/SHINE Low-E Beamline impact on COHERENT](#page-0-0) 9 December 2020 4/21

National Nuclear Security Administration

Consortium for Nonoroliferation

The Spallation Neutron Source at Oak Ridge National Laboratory

Neutrino Alley

- \diamond Beam-related neutrons could cause similar signal to CEvNS
- $\diamond~$ Spallation process which creates π^+ also creates the neutrons
- \Diamond Background study located a neutron-quiet hallway 20 m from the target
- \Diamond Neutrino Alley: 8 m.w.e., 20 m of concrete/gravel shielding

Collaboration Results and Plans

- \Diamond 2017: First observation (6.7 σ in CsI[Na]) \approx 2020: Full dataset results above 10 σ
- \Diamond 2020: CEvNS in second detector (3.5 σ in LAr)

¹A. Konovalov, "COHERENT at the SNS and CsI[Na] Effort Update", Magnificent CEvNS (2020).

 2 D. Pershey, "New Results from the COHERENT CsI[Na] Detector", Magnificent CEvNS (2020).

 $3D.$ Akimov et al., "First detection of coherent elastic neutrino-nucleus scattering on argon", in press at PRL (2020).

Accelerator DM

Preliminary

Impact of the first CEvNS Observations

 10

Neutron Distribution

Details in arXiv:2005.01645

Plot from Magnificent CEvNS 2020 Supernova Neutrinos 0 10 20 30 40 50 Neutrino Energy (MeV) **^e** ν **^e** ν **)** νµ**+**νµ**+**ντ**+**ν^τ **(^x** ν **^e SNS** ν **SNS** ν^µ **SNS** ν^µ Plot from K. Scholberg

Preliminary

- Monitor reactors
- \diamond Non-proliferation

Rebecca Rapp (Carnegie Mellon University) [NA61/SHINE Low-E Beamline impact on COHERENT](#page-0-0) 9 December 2020 8/21

What comes next?

- \Diamond Precision CEvNS:
	- \triangleright Larger, more sensitive detectors
	- \triangleright Reduce neutrino flux systematic
	- \triangleright Improve background characterization
- Additional cross-section measurements:
	- \triangleright CC interactions for supernova detection
	- \triangleright Neutrino-induced-neutrons in shielding

Simulating the Spallation Neutrino Source

- \Diamond Geant4 Simulation of the Spallation Neutron Source
- \diamond Simplified geometric model from ORNL tech drawings
- \Diamond Goal: model ν production from 1 GeV ν interactions
- \diamond Model similar to LAHET, assigned 10% systematic

Rebecca Rapp (Carnegie Mellon University) [NA61/SHINE Low-E Beamline impact on COHERENT](#page-0-0) 9 December 2020 10/21

FTS ν Production: Flux, Breakdown, and Spectra

- \diamond With 1.011 GeV protons, simulations predict 0.265 ν /POT
- \Diamond SNS capability of 1.55×10¹⁴ p/pulse \implies 2.5 × 10¹⁵ ν /s

FTS ν Production: Position and Angular Distributions

- $\Diamond \nu$ primarily produced within 1 m of the target
- COHERENT detectors ∼20 m from target
- \diamond Working to quantify position-related effects

Rebecca Rapp (Carnegie Mellon University) [NA61/SHINE Low-E Beamline impact on COHERENT](#page-0-0) 9 December 2020 12/21

FTS ν Production: Dependence on PBW and Proton Energy

- \Diamond The proton-beam-window has featured multiple designs:
	- \triangleright Inconel films from April 2006 January 2017
	- \triangleright Aluminum plate from January 2017 April 2020
	- \triangleright Inconel design from April 2020 present
- \Diamond Proton energy for COHERENT runtime \in [800, 1011] MeV Proton Power Upgrade: Energy increase 1.3 GeV by 2024

SNS Second Target Station

- \diamond Known details from FPSTS-19 Workshop, much unknown
- \Diamond 21-wedge rotating target assembly made of dense W
- \diamond Neutron moderators on top of active target wedge
- \Diamond POT at 15 Hz, 1.3 GeV protons, pion decay-at-rest source
- \Diamond With aluminum PBW design, preliminary 0.14 $\{\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}\}\/$ POT

Physics model validations

- \diamond No data for pion production on Hg from 1 GeV incident protons
- e Hadron Production Experiment ran at CERN's Proton Synchrotron from 2000 2002
	- \triangleright Measured pion production from proton-nucleus collisions at varied beam energies
	- \triangleright TPC calibration considerations generated a subgroup: HARP-CDP
	- \triangleright We compare our simulations to the 3 GeV results for both HARP and HARP-CDP
- \Diamond Test the following precompounded Geant4.10.06 physics lists to validate their pion production: QGSP BERT QGSP BIC QGSP INCLXX
- . Bertini Cascade
- . Recommended for hadrons
- \triangleright Nucleus modeled as the sum of particle-hole states
-
- \triangleright Binary Cascade
- \triangleright Fermi gas model of nuclei
- \triangleright More secondary production of protons and neutrons
-
- . Liege Intranuclear Cascade
- \triangleright Well tested for spallation
- \triangleright Geant4 implementation not tested for light nuclei
 \mathbb{R}^n

HARP and HARP-CDP Double Differential Comparisons

- \Diamond HARP and HARP-CDP analyses use different binning choices
- \Diamond 10% uncertainty on simulation predictions shown

HARP and HARP-CDP Single Differential Comparisons

- $\diamond~$ SNS: π^+ stop and decay-at-rest inside the dense Hg
- \Diamond Our ν flux is insensitive to both angle and momentum
- \Diamond Integrations: $\theta \in [0.35, 2.15]$ rad and $p \in [0.1, 0.8]$ GeV/c
- No physics list predicts shape of $d\sigma/dp$ of Pb
- OGSP INCLXX poorly predicts shape of $d\sigma/d\theta$ of Pb
- QGSP BIC demonstrates poor overall normalization

HARP and HARP-CDP Cross-section Comparisons

- Integrate over $\theta \in [0.35, 2.15]$ rad and $p \in [0.1, 0.8]$ GeV/c
- Generally, all models overpredict HARP and HARP-CDP measurements
- OGSP_BERT consistent with HARP data within 10% uncertainty
- Still well above SNS energies not a direct comparison to COHERENT conditions

D₂O Demonstrator at the SNS

Model from Eric Day, CMU

- Monoenergetic thin-target measurements help, but aren't the full story
- \Diamond D₂O Cherenkov detector studying $\nu_e + d \rightarrow p + p + e^-$ (known to 2-3%)
- Demonstrator designed around space constraints of Neutrino Alley
- Will experimentally normalize SNS ν flux and benchmark simulations
- One module cannot resolve relative contributions from PBW vs. target

COHERENT and NA61/SHINE

- \Diamond Reducing the 10% systematic on the ν flux required for precision CEvNS
- COHERENT will measure ν flux at the SNS before the beam energy increases in 2024 (D₂O)
- \Diamond Hadron production data at 1 GeV will benefit our simulation and design efforts
- \Diamond Interested in full cross-section: all product angles and momenta
- Some specific interests for understanding SNS ν flux:

[Conclusion](#page-19-0)

Thank you!

This work is supported by DE-SC0010118.

Rebecca Rapp (Carnegie Mellon University) [NA61/SHINE Low-E Beamline impact on COHERENT](#page-0-0) 9 December 2020 21/21

Backup Slides

Rebecca Rapp (Carnegie Mellon University) [NA61/SHINE Low-E Beamline impact on COHERENT](#page-0-0) 9 December 2020 1/2

Norbury-Townsend Comparisons

- \Diamond Study of π production in nucleus-nucleus collisions
- \diamond Parameterization for π^+ valid from 0.4 2.1 AGeV
- Inputs for our fixed target scenario:
	- \triangleright A_i(= 1): number of nucleons incident
	- \triangleright A_t: number of nucleons in target
	- $\triangleright E_i$: energy of incident particle

$$
\frac{\sigma_{\pi^+}}{\text{mb}} = \frac{(A_i A_t)^{2.2/3}}{0.00717 + 0.0652 \frac{\log(E_i/\text{GeV})}{E_i/\text{GeV}} + \frac{0.162}{(E_i/\text{GeV})^2}}
$$

Rebecca Rapp (Carnegie Mellon University) [NA61/SHINE Low-E Beamline impact on COHERENT](#page-0-0) 9 December 2020 2/2