Fermilab DU.S. DEPARTMENT OF Science

Booster Neutrino Beam

Žarko Pavlović NA61/SHINE at Low Energy 08 December 2020

Booster Neutrino Beamline

- 8 Gev protons from Booster
 - up to 5Hz and 5e12 protons per pulse
- Beryllium target
- Horn pulsed at 170kA (neutrino and antineutrino mode)
- 50m long decay region

BNB target

- Seven 10.2cm long Beryllium cylindrical slugs with 1cm diameter
- Each slug supported by 3 supporting fins within the Be container
- Air cooled

BNB experiments

- Experiments
 - MiniBooNE, SciBooNE, SciBath, MicroBooNE, ANNIE, ICARUS, SBND
- Physics goals
 - Sterile neutrino searches, Neutrino cross sections in 1GeV region, Dark matter searches, neutron flux

18 years of running

POT

• Still more to come

POT

Neutrino mode flux (MiniBooNE)

- Flux calculation based upon the geant4 simulation
- Many of the processes constrained with external data

	1	$ u_{\mu}$	ī	$\overline{ u}_{\mu}$
Flux $(\nu/{\rm cm}^2/{\rm POT})$		$5.19 imes 10^{-10}$		3.26×10^{-11}
Frac. of Total		93.6%		5.86%
Composition	π^+ :	96.72%	π^- :	89.74%
	K^+ :	2.65%	$\pi^+ \rightarrow \mu^+$:	4.54%
	$K^+ \rightarrow \pi^+$:	0.26%	K^- :	0.51%
	$K^0 \rightarrow \pi^+$:	0.04%	K^0 :	0.44%
	K^0 :	0.03%	$K^0 \to \pi^- \text{:}$	0.24%
	$\pi^- \rightarrow \mu^-$:	0.01%	$K^+ \rightarrow \mu^+$:	0.06%
	Other:	0.30%	$K^- \rightarrow \pi^-$:	0.03%
			Other:	4.43%
	1	Ve	1	Ve
Flux $(\nu/\mathrm{cm}^2/\mathrm{POT})$		2.87×10^{-12}		3.00×10^{-13}
Frac. of Total		0.52%		0.05%
Composition	$\pi^+ \rightarrow \mu^+$:	51.64%	K_L^0 :	70.65%
	K^+ :	37.28%	$\pi^- \rightarrow \mu^-$	19.33%
	K_{L}^{0} :	7.39%	K^- :	4.07%
	π^+ :	2.16%	π^- :	1.26%
	$K^+ \rightarrow \mu^+$:	0.69%	$K^- \rightarrow \mu^-$:	0.07%
	Other:	0.84%	Other:	4.62%

Phys. Rev. D79, 072002 (2009)

Neutrino mode flux (MiniBooNE)

Antineutrino mode flux (MiniBooNE)

- Flux calculation based upon the geant4 simulation
- Processes constrained with data where available
- Notable difference is that ν_{μ} (wrong sign) much more pronounced

		$ u_{\mu}$		$\overline{ u}_{\mu}$
Flux $(\nu/{\rm cm}^2/{\rm POT})$		5.42×10^{-11}		$2.93 imes 10^{-10}$
Frac. of Total		15.71%		83.73%
Composition	π^+ :	88.79%	π^{-} :	98.4%
	K^+ :	7.53%	K^- :	0.18%
	$\left \pi^{-} ightarrow \mu^{-} ight $	1.77%	$K^0 ightarrow \pi^-$:	0.05%
	K^0 :	0.26%	K^0 :	0.05%
	Other:	2.00%	$\pi^+ \to \mu^+$:	0.03%
			$K^- \rightarrow \pi^-$:	0.02%
			Other:	1.30%

	ν	e	Ī	$\overline{\nu}_e$
Flux $(\nu/{\rm cm}^2/{\rm POT})$	6	3.71×10^{-13}		1.27×10^{-12}
Frac. of Total		0.2%		0.4%
Composition	K^+ :	51.72%	$\pi^- ightarrow \mu^-$:	75.67%
	K^0 :	31.56%	K^0 :	16.51%
	$\pi^+ \to \mu^+$	13.30%	K^- :	3.08%
	π^+ :	0.83%	π^- :	2.58%
	$K^+ \to \mu^+$:	0.41%	$K^- \rightarrow \mu^-$:	0.06%
	Other:	2.17%	Other	2.10%

Phys. Rev. D79, 072002 (2009)

Antineutrino mode flux (MiniBooNE)

Pion production

- Sanford-Wang fits:
 - HARP (thin target)
 - 8.89GeV p on Be target
 - P = 0.85 6.5 GeV/c
 - θ = 30 210 mead
 - E910
 - 6.4, 12.3, 17.5 GeV/c
 - P = 0.4 5.6 GeV/c
 - θ = 18 400 mead
- Fits done both to $\pi^{\!\scriptscriptstyle +}$ and $\pi^{\!\scriptscriptstyle -}$ production data
- Harp data covers phase space contributing to 78% of neutrino flux from π⁺ (76% from π⁻ in antineutrino mode)

HARP

 Probably hard to improve in the region already constrained by HARP

D. Schmitz, PhD thesis

HARP coverage

- Neutrino mode
 - 90% of numu flux from p+Be->pi+->numu
 - 78% of flux from pi+ covered by HARP measurement

Wrong signs

- In neutrino mode \overline{v}_{μ} events are not significant, however in antineutrino mode v_{μ} events are
- v_µ parent π⁺ contributing to events in antineutrino mode largely not constrained by HARP

Extended Sanford Wang model

- Current BNB simulation based on the old SW parameterization
- Using extended SW model
 improves fit to HARP data

- Overall 2% change in neutrino flux
- M. G. Catanesi, et al., Eur.Phys.J.C C52 (2007) 29-53.
- A. Wickremasinghe, PhD thesis

K+ production

- Global data fit using Feynman scaling based parameterization
- Further constrained by SciBooNE measurement of kaons in BNB

Phys. Rev. D84, 114021 (2011) Phys. Rev. D84, 012009 (2011)

Neutral kaons and K-

- Sanford-Wang fits to K⁰_S production data
 - BNL E910 experiment (p_{beam}= 12.3 and 17.5 GeV/c)
 - KEK Abe et al. (12.3 GeV/c)
- Forward production important and not entirely covered by data, but the two data sets combined constrain the production via SW fit

- K⁻ production from MARS
 - negligible contribution to neutrino flux

Hadronic interactions

- Hadronic cross sections on beryllium and aluminum constrained with data where available - total, inelastic & quasi-elastic
- Elastic cross section calculated by subtracting measured inelastic from total calculated using Glauber model

	p-(Be/Al)	n-(Be/Al)	π^{\pm} -(Be/Al)
σ_{TOT}	Glauber	Glauber	Data $(p < 0.6/0.8{\rm GeV}/c)$
		(checked with data)	Glauber $(p > 0.6/0.8 \text{GeV}/c)$
σ_{INE}	Data	(same as p-Be/Al)	Data
σ_{QEL}	Shadow	Shadow	Data ($p < 0.5{\rm GeV}/c$)
			Shadow $(p > 0.5 \text{GeV}/c)$

Phys. Rev. D79, 072002 (2009)

Flux uncertainty

- Propagate uncertainties using many MC worlds to build error matrices that capture correlations between bins of observables
 - Spline fits through HARP data
 - Kaon fits
 - Hadron cross sections on Be and Al
 - Horn Focusing
 - POT counting

Spline fits

- HARP data interpolated using splines
- Splines created first in θ at fixed values of p, and then resulting splines interpolated to produce values as a function of p
- Full 78x78 covariance matrix from HARP used to vary measured double differential cross sections
- Splines also used to extrapolate outside the HARP region

Hadronic uncertainty

- σ_{TOT} , σ_{INE} , and σ_{QEL} are separately varied for nucleons on Be and AI, and for pions on Be and AI
- Flat offset is applied to momentum dependent cross section
- Offsets cover deviations of data from used parameterization or model

	$\Delta \sigma_{TOT}$ (mb)		$\Delta \sigma_{INE}$ (mb)		$\Delta \sigma_{QEL} \ ({ m mb})$	
	Be	Al	Be	Al	Be	Al
(p/n)-(Be/Al)	± 15.0	± 25.0	± 5	± 10	± 20	± 45
π^{\pm} -(Be/Al)	± 11.9	± 28.7	± 10	± 20	± 11.2	± 25.9

Phys. Rev. D79, 072002 (2009)

HARP thick target analysis

- Not used to constrain the uncertainty, but cross checked simulation
- Double ratios of thin to thick yields data to MC consistent with 1 (+-1-2%) indicating that the simulation does a good job extrapolating to long target

A. Wickremasinghe, PhD thesis

Flux uncertainty

- Dominated by pion production uncertainty
- Other includes: horn current miscalibration, horn current distribution in inner conductor, nucleon+Be/AI cross sections, pion+Be/AI cross sections
- Horn field and Nucleon QE
 xsec dominate in Other

🚰 Fermilab

MICROBOONE-NOTE-1031-PUB

Flux uncertainties (neutrino mode)

- Dominant uncertainty from pion production
- Nucleon QE dominates the nucleon cross section error (mostly flat in energy)

	пити	numubar	nue	nuebar
pi+	11.4	1.2	12.0	0.1
pi-	0.0	11.9	0.0	3.8
K+	0.2	0.1	2.1	0.1
К-	0.0	0.4	0.0	3.4
KOL	0.0	0.3	2.2	22.7
Horn field	2.5	3.3	0.8	0.7
Nucleon	2.7	5.2	3.0	4.9
Pion	1.4	0.9	0.4	0.7
Total	12.1	13.5	12.8	23.8

Conclusion

- BNB flux largely constrained by HARP data
- Errors in the peak ~6-7%, but are large outside the HARP region
- There is opportunity to improve the low/high energy region, wrong sign flux in antineutrino mode

