atmospheric neutrino simulation with beam data

Kazufumi Sato (Nagoya University) 10 Dec. 2020 @ NA61 low E workshop

 study to incorporate accelerator hadron measurements into atmospheric neutrino simulation (Honda flux)

atmospheric neutrino (atm. v)

primary cosmic-ray particles (p,He) hit to air atoms

- → develop hadronic shower
 - $\rightarrow \text{cascade} : \pi \rightarrow \mathbf{v}_{\mu}, \mu \rightarrow \mathbf{v}_{\mu}, \mathbf{v}_{e}$ $atm. \mathbf{v's}$
 - E_v : O(10) MeV O(10) TeV • flight length L : 10 — O(10⁴) km \rightarrow W

Honda flux code (ATMNC)

ATMNC: ATMospheric Muon Neutrino Calculation code developed by M. Honda (U of Tokyo, ICRR) [PRD 83, 123001(2011) and references in it]

- full MC simulation for air shower
- \rightarrow provides v_{μ} , \overline{v}_{μ} , v_{e} , \overline{v}_{e} flux at a given detector position
- **3D** simulation
 - air density model NRLMSISE-00
 - geomagnetic model IGRF
 - precise primary particle flux based on AMS02 data
- has been used in SK atm. v analysis

 \rightarrow for analysis in HK, we want to improve its accuracy

uncertainty of atm. v flux

hadron production hadronic cross-section

- hadronic interactions in air shower
 → dominant!
 - Hadronic Model
 - JAM (E<31GeV)
 - dpmJet3 (otherwise)
- tuned by using atm. µ data by Honda-san

limitation of tuning

- low E_v (<1GeV): E deposit of μ
- high E_{v} (>10 GeV): K contribution

uncertainty of atm. v flux

hadron production hadronic cross-section

- hadronic interactions in air shower
 → dominant!
 - Hadronic Model
 - JAM (E<31GeV)
 - dpmJet3 (otherwise)
- tuned by using atm. µ data by Honda-san

limitation of tuning

- low E_v (<1GeV): E deposit of μ
- high E_{v (}>10 GeV): K contribution

activity of Nagoya ISEE CR group

studying to incorporate hadron production data measured in beam experiments into ATMNC

 several beam measurements are conducted/planned (mainly for long-baseline v experiment)
 HARP, BNL E910, NA61/SHINE, EMPHATIC
 → reflect these measurement results into ATMNC

Maybe the measurement data is insufficient but...

- can **reduce uncertainty** by combining the muon study
- can reveal which phase space is important for atm. v production, and feed back to the beam experiment
- common treatment of sys. error between T2K-SK

method to incorporate beam data into ATMNC

What we want to do:

 \bullet correct difference of $\frac{d\sigma}{dpd\Omega}~$ between data and ATMNC

→ apply the *weight* $w = \frac{\left(\frac{d\sigma}{dpd\Omega}\right)_{data}}{\left(\frac{d\sigma}{dpd\Omega}\right)_{MC}}$

for each hadron interaction in ATMNC simulation

method to incorporate beam data into ATMNC

Beam particle, outgoing particle

What kind of hadron interaction is involved in **v production?**

breakdown of hadron production

fraction to # of all hadron productions involved in atm. v production

outgoing particle from p+Air

neutrino momentum p_v [GeV/c]

- " $\mathbf{p} + \mathbf{Air} \rightarrow \mathbf{m}^{\pm} + \mathbf{X}$ " is dominant
- in < 1 GeV, p,n contribute.
- in > 5 GeV, K contributes

To explore sub-GeV v, we need beam data of $p + A \rightarrow \pi^{\pm} + X$ and $p + A \rightarrow p + X$

beam momentum

available recent beam data p <= 31 GeV/c

p _{beam} [GeV/c]	3	5	6.4	8	12	12.3	17.5	31
n+Re	HARP	HARP	E910	HARP	HARP	E910	E910	
PIDC	π±							
n+C	HARP	HARP		HARP	HARP			NA61
ρ+Ο	π±	π±		π±	π±			π±,K±,p
ριΔl	HARP	HARP		HARP	HARP			
ρ+Al	π±	π±		π±	π±			

HARP : 3,5,8,12 GeV, p+ (Be,C,AI,Cu) $\rightarrow \pi^{+-}$ + X

(*Forward*) Phys.Rev.C80, 035208 (2009) (*Large Angle*) Eur. Phys. J. C 53, 177–204 (2008) (*Large Angle*) Eur. Phys. J. C 54, 37–60 (2008)

BNL E910 : 6.4, 12.3, 17.5 GeV, p+ (Be,Cu,Au) → π⁺⁻ + X (Forward) Phys. Rev. C 77, 015209 (2008) (Large Angle) Phys. Rev. C 65, 024904 (2002)

NA61/SHINE : 31 GeV, $p + C \rightarrow \pi$, K, p + X

Eur. Phys. J. C 76, 84 (2016)

π phase space (for **0.3 GeV v_µ**)

p_/p_beam

π phase space (for **0.69 GeV** v_{μ})

π phase space (for **1.4 GeV** v_{μ})

p phase space (for **0.3 GeV v_{\mu}**)

*Both HARP and BNL data are π only \rightarrow We need proton production data!

coverage

How much the phase space is covered by beam data

parameterization?

want to cover this region by parameterization!
 several candidates of parameterization

Sanford & Wang (1967), Badhwar (1977), Mokhov (1998), Mariani (2011), BMPT(2001)

ref:

- S.R. Blattnig et al., PRD, 62, 094030 (2000)
- M. Bonesini et al., Eur. Phys. J. C 20 (2001)
- C. Mariani et al., PRD, 84, 114021 (2011)

BMPT (2001) (M. Bonesini et al., Eur. Phys. J. C 20 (2001))

$$E\frac{d^{3}\sigma}{dp^{3}} = A(1-x_{R})^{\alpha}(1+Bx_{R})x_{R}^{-\beta} \times [1+\frac{a}{x_{R}^{\gamma}}p_{T}+\frac{a^{2}}{2x_{R}^{\delta}}p_{T}^{2}]e^{-a/x_{R}^{\gamma}p_{T}}$$

* see *backup* for definitions of other parameterizations

$$x_R \equiv \frac{E_{CM}}{\max\{E_{CM}\}}$$

: radial scaling
assume that x_R is
independent from E_{beam}
[F. E. Taylor et al.,
PRD 14, 1217 (1976)]

fitting (forward and large-angle data)

test a simultaneous fit of *forward* and *large-angle* data

use HARP p+C data • for each beam momentum

chi2 / NDF of BMPT fit										
beam [GeV]	3	5	8	12						
chi2 / NDF	125 / 80	151 / 97	338 / 129	304 / 135						
N_1/N_0	2.05	1.7	1.6	1.6						

we need 1.6~2 normalization factors
 absolute value is inconsistent between forward and large-angle data 19

e.g.) BMPT fit result @ HARP-8GeV p+C $\rightarrow \pi^++X$

fitting (forward data only)

• use data whose beam momenta are close to each other

HARP p+(Be,C,AI) BNLE910 p+Be NA61 p+C

÷

chi2/NDF of p+A $\rightarrow \pi^+$ + X

beam P[GeV]	3,5	5, <mark>6.4</mark> ,8	8,12, <mark>12.3</mark>	12,12.3,17.5	17.5, 31
BMPT	114.268 / 91	490.398 / 265	820.649 / 422	658.817 / 327	972.313 / 480
	C	hi2/NDF c	of $p + A \rightarrow$	π + X	

beam P[GeV]	3,5	5, <mark>6.4</mark> ,8	8,12, <mark>12.3</mark>	12,12.3,17.5	17.5, 31
BMPT	40.8346 / 82	296.486 / 248	580.453 / 403	528.442 / 317	1470. / 513

p+A → K+ + X	p+A → K - + X	$p+A \rightarrow p + X$
---------------------	----------------------	-------------------------

beam P[GeV]	31	beam P[GeV]	31	beam P[GeV]	31
BMPT	81.5 / 88	BMPT	122 / 80	BMPT	193 / 177

:

weight tables

- make weight tables for 27 momenta of incident particles
 - every 0.5 GeV/c for $3 \le p_{in} \le 10$ GeV/c
 - + $p_{in} = 11, 12, 14, 16 17.5, 20, 25, 31.6, 50, 100, 300 \text{ GeV/c}$

covered region by HARP 3 GeV/c forward data

modification from original

calculate flux by using only regions which covered by weight tables

the flux change is -10%–15% = similar to Honda flux uncertainty

impact of beam data error

14% at sub-GeV region→ similar to current ATMNC uncertainty

Summary

To reduce uncertainty of **Honda flux simulation** in <1 GeV region...

- we need ...
 - $p + A \rightarrow \pi^{+,-} + X \& p + A \rightarrow p + X$
 - proton beam momentum : ~10 GeV/c
- phase space coverage of HARP and BNL-E910 data
 - only π data are available -> we want **low E proton production data**
 - coverage of phase space : ~ 50% of π production for 0.3 GeV/c neutrino
- Parameterization to extrapolate the data
 - test several parameterizations
 - failed to fit the forward and large angle data simultaneously
 - → precise measurements with low-E beam will help to find proper parameterization
- test weighting method (preliminary, using forward data only)
 - 1σ beam data error fluctuates v flux by ~14%

backup

HARP's data

uncertainty of HARP data (forward) p+(C, Be, AI)→ π + X

parameterization functions

ref:

- S.R. Blattnig et al., PRD, 62, 094030 (2000)
- M. Bonesini et al., Eur. Phys. J. C 20 (2001)
- C. Mariani et al., PRD, 84, 114021 (2011)

Sanford & Wang (1967)

$$\frac{d^2 \sigma^{\pi}}{dp d\Omega} \left(p, \theta \right) = c_1 p^{c_2} \left(1 - \frac{p}{p_{\text{beam}}} \right) \exp \left[-c_3 \frac{p^{c_4}}{p_{\text{beam}}^{c_5}} - c_6 \theta \left(p - c_7 p_{\text{beam}} \cos^{c_8} \theta \right) \right]$$

Badhwar (1977)

$$E\frac{d^{3}\sigma}{d^{3}p} = \frac{A}{(1+4m_{p}^{2}/s)^{r}}(1-\tilde{x})^{q}\exp\left[\frac{-Bp_{T}}{1+4m_{p}^{2}/s}\right] \qquad \tilde{x} \equiv \left[x_{F}^{2} + \frac{4}{s}(p_{T}^{2}+m^{2})\right]^{1/2} \quad q = \frac{C_{1} + C_{2}p_{T} + C_{3}p_{T}^{2}}{\sqrt{1+4m_{p}^{2}/s}}$$

Mokhov (1998)

$$E\frac{d^{3}\sigma}{d^{3}p} = A\left(1 - \frac{p}{p_{\text{max}}}\right)^{B} \exp\left(-\frac{p}{C\sqrt{s}}\right) V_{1}(p_{T}) V_{2}(p_{T}) \qquad V_{1}(p_{T}) = (1 - D) \exp(-Ep_{T}^{2}) + D \exp(-Fp_{T}^{2}) + D \exp(-Fp$$

 $V_2(p_T) = 0.7363 \exp(0.875 p_T)$ for $p_T \le 0.35$ GeV = 1 for $p_T > 0.35$ GeV.

Mariani (2011), (Mariani et al, Phys. Rev. D 84, 114021)

$$\frac{d^2\sigma}{dpd\Omega} = \frac{p_K^2}{E_K} \left(E_K \frac{d^3\sigma}{dp_K^3} \right) = \left(\frac{p_K^2}{E_K} \right) c_1 \times \\ \times \exp\left[c_3 \left| x_F \right|^{c_4} - c_7 \left| p_T \times x_F \right|^{c_6} - c_2 p_T - c_5 p_T^2 \right]$$

BMPT (2001) (M. Bonesini et al., Eur. Phys. J. <u>C 20 (2001)</u>)

$$E\frac{a^{\circ}\sigma}{dp^{3}} = A(1-x_{R})^{\alpha}(1+Bx_{R})x_{R}^{-\beta}\times$$
$$[1+\frac{a}{x_{R}^{\gamma}}p_{T}+\frac{a^{2}}{2x_{R}^{\delta}}p_{T}^{2}]e^{-a/x_{R}^{\gamma}p_{T}}$$

$$x_R \equiv \frac{E_{CM}}{\max\{E_{CM}\}}$$

: radial scaling
assume that x_R is
independent from E_{beam}
[F. E. Taylor et al.,
PRD 14, 1217 (1976)]

consistency : forward \rightleftharpoons large-angle

simultaneous fit of HARP p+C forward and large-angle data chi2 / NDF of BMPT fit

beam [GeV]	3	5	8	12
chi2 / NDF	125 / 80	151 / 97	338 / 129	304 / 135
N_1/N_0	2.05	1.7	1.6	1.6
	chi2	/ NDF of Mar	iani fit	
beam [GeV]	3	5	8	12
chi2 / NDF	failed	132 / 98	318 / 129	304 / 135
N_1/N_0	—	1.7	1.7	1.7
	chi2	/ NDF of Mol	khov fit	
beam [GeV]	3	5	8	12
chi2 / NDF	153 / 84.	178 / 101	363 / 133	335 / 139
N_1/N_0	2.5	1.6	1.7	1.7

• we need 1.6~2 normalization factors

absolute value is inconsistent between forward and large-angle data 31

phase space coverage of beam data

to estimate the phase space coverage of beam data, interpolate phase spaces between neighboring beam momentums.

linearly interpolate phase spaces of HARP-3GeV and HARP-5GeV data

- for $p+A \rightarrow \pi + X$
 - interpolate 3-5, 5-6.4, 6.4-8, 8-12, 12-17.5, 17.5-31GeV/c

neutrino flux

from Yano-san's slide @ lowBG simposium 2019 in Sendai, Japan

used beam data

HARP p+C $\rightarrow \pi^+ + X$

BNL p+Be $\rightarrow \pi^+ + X$

NA61 p+C $\rightarrow \pi^+$ + X

proton E vs neutrino E

fit result

fit (each)

- summary of $p + A \rightarrow \pi + X$
 - p_{beam} >= 17.5 GeV
 - SW can't fit with data
 - p_{beam} <= 12.3 GeV
 - generally SW is better than BMPT
 - both SW and BMPT are not good for HARP 8 GeV π⁺, p+C & p+Be data

GeV/c , A	31 on C	450 on Be
р+А →К+ +Х	81.5 / 88	
р+А →К- +Х	122 / 80	
p+A →p +X	193. / 177.	

fit χ^2 / NDF (fit for each beam data)

p+A → π+ + X	* bold : χ²/NDF > ~2

BMPT

GeV	3	5	6.4	8	12	12.3	17.5	31	450
p+Be	3.5/3	21.7/18	10.1/23	121/51	112/57	64.8/64	115/67		
p+C	0.5/3	34.0/17		113/49	69.0/55			582/407	
p+Al	3.0/1	23.5/19		83.2/51	69.6/58				

Sandford-Wang

			. •						
450	31	17.5	12.3	12	8	6.4	5	3	GeV
		225/67	89.2/64	87.3/57	110/51	10.3/23	23.8/21		p+Be
	2390 /407			58.6/55	99.5/49		22.4/18	1.5/4	p+C
40				52.7/58	61.0/52		17.6/22	3.2/1	p+Al

fit χ^2 / NDF (fit for each beam data)

$p+A \rightarrow \pi + X$ * bold : $\chi^2/NDF >$								= > ~2			
BMPT											
GeV	3	5	6.4	8	12	12.3	17.5	31	450		
p+Be	4.1/2	6.7/12	33.5/22	55.6/47	76.0/52	126/57	125/67				
p+C	1.29/1	10.2/14		52.1/49	65.5/51			1185 /438			
p+Al	0.84/2	6.6/13		58.0/47	75.6/56						
	ł	:	,	Sandfo	rd-Wai	ng					
GeV	3	5	6.4	8	12	12.3	17.5	31	450		
p+Be	4.2/4	5.9/14	37.6/24	52.1/49	61.3/54	80.5/59	143/69				
p+C	1.7/3	10.7/16		55.4/47	56.1/53			2870 /440			
p+Al	0.84/2	6.9/15		50.0/49	77.5/58				41		

simultaneous fit over different beam P

$$\chi^2 = \sum_{j}^{beam} \{ N_j \times \sum_{i}^{\text{point}} \left(\frac{X_i - f(p_{beam;j}, p_i, \theta_i)}{\sigma_i} \right)^2 \}$$

p+ Be → π+ + X				p+ Be → π + X				
GeV	HAPR 3,5,8,12	6.4	12.3	17.5	HARP 3,5,8,12	6.4	12.3	17.5
BMPT	284.072 / 141	Х	Х	Х	142.015 / 131	Х	Х	Х
BMPT	614.741 / 315				366.479 / 303			
SW	265.575 / 147	Х	Х	Х	134.605 / 133	Х	X	Х
SW	495 / 246			Х	295.8 / 230			Х

	p+ C → π +	+ X	p+ C → π + X			
GeV	HAPR 3,5,8,12	NA61 31	GeV	HAPR 3,5,8,12	NA61 31	
BMPT	855.375 / 551		BMPT	899.087 / 577		

fit χ² / NDF (neighboring beam energy)

HARP p+(Be,C,AI) BNLE910 p+Be NA61 p+C $p+A \rightarrow \pi^+ + X$

	3,5	5, <mark>6.4</mark> ,8	8,12, <mark>12.3</mark>	12,12.3,17.5	17.5, 31		
BMPT	114.268 / 91	490.398 / 265	820.649 / 422	658.817 / 327	972.313 / 480		
SW	116.595 / 100	499.225 / 272	922.322 / 422				
$p+A \rightarrow \pi + X$							
	3,5	5, <mark>6</mark> .4 ,8	8,12, <mark>12.3</mark>	12,12.3,17.5	17.5, 31		
BMPT	40.8346 / 82	296.486 / 248	580.453 / 403	528.442 / 317	1470. / 513		
SW	42.5501 / 84	265.481 / 250	524.49 / 405	—			
$p+A \rightarrow K^+ + X$ $p+A \rightarrow K^- + X$ $p+A \rightarrow p + X$							
	31		31		31		
BMPT	81.5 / 88	BMPT	122 / 80	BMPT	193 / 177		

check for A-scaling with HARP data

Fit

$$\chi^2 = \sum_{i}^{X_F, P_t, A} \left(\frac{\sigma_i - \alpha(X_F, P_t) \sigma_{Be}(X_F, P_t)}{\Delta \sigma_i} \right)^2$$

 $\alpha(x_F, p_T) = (a + bx_F + cx_F^2)(d + ep_T^2)$ a,b,c,d,e: parameters we want

 $\sigma_i \pm \Delta \sigma_i$: *i*-th data

 $\sigma_{Be}(X_F, P_t)$: X_F PtにおけるBeの断面積

(nuisance parameters)

* (X_F, Pt)の組み合わせごとにo_{Be}がある

全データを使ってa~eを求める。

	Pbeam	chi2 / NDF	а	b	С	d	е		
	3	7.54 / 12	0.90±0.17	-0.9±0.4	-1.8±0.8	1.0 (fixed)	-2 ± 21		
	5	25.2 / 48	0.62±0.26	-0.2±1.3	0.1±1.5	1.0 (fixed)	-1.1±1.8		
	8	128 / 115	0.69±0.11	-1.0±0.7	2.8±1.2	1.0 (fixed)	0.8±0.4		
	12	68 / 128	0.82±0.07	-1.0±0.5	-0.6±0.9	1.0 (fixed)	0.4±0.4		
ref:T2K (p _{beam} :19.2, 24)		0.75	-0.52	0.23	1.0 (fixed)	0.21			

- chi2 /NDFを見る限りはデータを説明できている
- a以外のパラメータの精度は、ほぼ無い

difference of target atom

need to consider the difference of target atom target atom in beam : **Be**, **C**, **AI** target atom in air shower : **N**, **O** (mean of A = 14.5)

• robust thought :

where:

 $\sigma_2 = \sigma_1 \times (A_2/A_1)^{2/3}$

• parameterization as a function of x_f and p_T is proposed (M. Bonesini et al., Eur. Phys. J. C 20 (2001))

$$E\frac{d^{3}\sigma(A_{1})}{dp^{3}} = \left[\frac{A_{1}}{A_{0}}\right]^{\alpha(x_{F},p_{T})} E\frac{d^{3}\sigma(A_{0})}{dp^{3}}, \qquad (6)$$

$$\frac{a \ b \ c \ d \ e}{Bonesini \ et \ al. \ [43] \ 0.74 \ -0.55 \ 0.26 \ 0.98 \ 0.21}$$

$$Fit to \ \pi \ data \qquad 0.75 \ -0.52 \ 0.23 \ 1.0 \ (fixed) \ 0.21$$

$$Fit to \ K \ data \qquad 0.77 \ -0.32 \ 0.0 \ 1.0 \ (fixed) \ 0.25$$

$$\rightarrow \quad \frac{d\sigma}{dpd\Omega}(A) = \frac{d\sigma}{dpd\Omega}(A_{air} = 14.5) \left(\frac{A}{A_{air}}\right)^{\alpha(x_F, p_T)}$$

^{*} I checked a parameterization with HARP Be, C, AI data (\rightarrow backup)

* generally, A-scaling effect is smaller than error bars of beam data

comparison with simple method check by using HARP Be, C, and Al data

ex) p_{beam} = 3GeV

ex) $p_{beam} = 8 GeV$

• generally speaking, the difference between $A^{2/3}$ and $\alpha(X_F,P_t)$ is small compared to the error bar.

chi2, difference

$\Delta F / \Delta fit$ for each (X_F, Pt)

chi2の大きいデー

cont.

- X_Fが大きいと、AIの測定値がA^{2/3}則より明らかに大きい時がある
 - それらではa(X_F,Pt)の方が合いが良い
- 8 GeV/cのX_F > 0.8以上のデータではα(X_F,Pt)は合わない

fit result (3-5 GeV)

fit result (5, 6.4, 8 GeV/c)

Ω

pOut[GeV]

pOut[GeV]

pOut[GeV]

fit result (12, 12.3, 17.5 GeV)

