Fermilab long-baseline fluxes

Leo Aliaga NA61/SHINE at Low Energy Workshop December 10, 2020

Neutrinos at the Main Injector

- » 120 GeV protons from Main Injector.
- » Graphite target
- » 2 Magnetic horns
- » Decay Pipe: 675 m filled with Helium.

Neutrinos at the Main Injector

- 120 GeV protons from Main Injector. **>>**
- Graphite target **>>**
- 2 Magnetic horns **>>**
- Decay Pipe: 675 m filled with Helium. $\rangle\rangle$
- It can run in neutrino or antineutrino modes **>>**

Neutrinos at the Main Injector

NuMI has run in two modes:

>>	Low energy	2005 - 2012	MINOS e
>>	Medium energy	2013 - present	NOvA era

Currently running with 10 µs spill every 1.33 s **>>** Achieved 750 kW power since early 2019 **>>**

NOvA Exposure to Null Beam

Collected data at NOvA ND to the present:

- 11 x 10²⁰ POT of neutrino-mode data **>>**
- 11.8 x 10²⁰ POT of antineutrino-mode data collected in the NOvA near detector so far. \rightarrow
- » More POT to come in the next years.

Leo Aliaga

NuMI target

Rectangular graphite rode, segmented in rectangular pieces ("fins").

50 fins in total: 1.2 m (~2.5 λ).

6

Leo Aliaga

Fermilab long-baseline fluxes

Long-Baseline Neutrino Facility

- Primary proton beam in 60-120 GeV. **>>**
- Initial 1.2 MW beam power, upgradable to 2.4 MW. $\rangle\rangle$
- Graphite target \rightarrow
- 3 Magnetic horns $\rangle\rangle$
- Extended Decay pipe, He filled. **>>**
- Experimental setup optimized for CP violation $\rangle\rangle$

Neutrino Fluxes

- Not monocromatic: wide-band. $\rangle\rangle$
- A-priori shape and normalization are $\rangle\rangle$ determined from simulation and hadron production constraints.

MINERvA ME (band: 2-10 GeV, peaked at 6.5 GeV)

Neutrino flux at NOvA

» 96% pure v_{μ} beam, 1% v_e and \overline{v}_e

DUNE Flux

Muon Neutrino Flux at DUNE Near Detector (on axis)

Amit Bashyal, NBI 2019

Numu Flux at DUNE Near Detector

MINERvA strategy for predicting a-priori flux

Neutrino Flux Predictions for the NuMI Beam [Phys. Rev. D 94, 092005 (2016)]

- The beamline simulation is G4NuMI (geant4 based). **>>**
- The foundation is formed from **constraining** (correcting) the **interaction** and the **hadron** \rightarrow production with external measurements on thick and thin targets.
- It corrects the yields given by the model to match the measured data. If not data is available we **>>** extend the data coverage or assign a well-educated guess.
- \rightarrow ("multi-universe" technique).
 - It requires the HP dataset bin-to-bin correlation

Common framework is used for other long baseline neutrino experiments, such as NOvA and DUNE

It propagates the **underlying data correlations** to calculate the **neutrino interaction covariance**

Hadron Production Corrections

Particle absorption

Neutrino Flux Predictions for the NuMI Beam [Phys. Rev. D 94, 092005 (2016)]

Particle absorption:

Interacting

$$correction(r) = \frac{\sigma_{Data}}{\sigma_{MC}} e^{-r \frac{N_A \rho(\sigma_{Data} - \sigma_{MC})}{A}}$$

 N_A : Avogadro Number, ρ : density, A: mass number

Not interacting

$$correction(r) = e^{-r \frac{N_A \rho(\sigma_{Data} - \sigma_{MC})}{A}}$$

Two variables are *important here:*

 \odot The amount of material: **rN_Ap/A**.

The σ_{Data} and σ_{MC} disagreement.

13 12-10-2020

Leo Aliaga

Fermilab long-baseline fluxes

Absorption correction

12-10-2020

Leo Aliaga

Fermilab long-baseline fluxes

We apply 10 mb uncertainty (~5%) **>>**

Hadronic interactions

Average number of hadronic interactions per neutrino at NOvA ND

Leo Aliaga

Hadronic interactions

Average number of hadronic interactions per neutrino at NOvA ND

Based directly on data:

Mostly NA49 proton on carbon **>>** producing charged pions, charged kaons, protons, neutrons,

Inclusive production of charged pions in p+C collisions at 158-GeV/c beam momentum

Eur.Phys.J.C 49 (2007) 897-917

16 12-10-2020

Leo Aliaga

Fermilab long-baseline fluxes

Proton making pions

NA49 Data/MC comparison

Statistical:

- Closed circles: statistical error < 2.5%, \rightarrow
- Open circles: statistical error 2.5-5.0%,
- Crosses > 5% \rightarrow

Systematics:

- 3.8% (added in quadrature). $\rangle\rangle$
- Highly correlated bin-to-bin (assumed 100%) **>>**

Contours:

2.5, 10, 25, 50 and 75 % of the π yields. **>>**

17 12-10-2020

Using NA49 to correction proton - Carbon

 $correction(x_F, p_T, E) = \frac{f_{Data}(x_F, p_T, E)}{f_{Data}(x_F, p_T, E)} \times scale(x_F, p_T, E)$

- We use NA49 for proton-Carbon **>>** interactions in 12-120 GeV using Feynman-x scaling
- NA49 (158 GeV/c) and NA61 (31 **>>** GeV/c) look in good agreement in our region of interest.
- The violation of the scaling is **>>** calculated using FLUKA.

Leo Aliaga

 $f_{MC}(x_F, p_T, E)$

Nucleon - A

Average number of hadronic interactions per neutrino at NOvA ND

- **Quasi-elastic interactions**, selected as $x_F > 0.95$ >>
 - We assign a 40% uncertainty

Extension of NA49. >>

- We extend NA49 to other materials than carbon adding an additional uncertainty.
- Additional uncertainty is calculated by looking at: K^0 and Λ^0 production at 300 GeV in Skubic and check with Barton at 100 GeV.

Nucleon - A

- **Quasi-elastic interactions**, selected as $x_F > 0.95$ $\rangle\rangle$
 - We assign a 40% uncertainty

Extension of NA49. **>>**

- We extend NA49 to other materials than carbon adding an additional uncertainty.
- Additional uncertainty is calculated by looking at: K^0 and Λ^0 production at 300 GeV in Skubic and check with Barton at 100 GeV.

Fermilab

Incident meson

Average number of hadronic interactions per neutrino at NOvA ND

We assume large uncertainties for incident mesons: 40%

Leo Aliaga

Incident meson

Main contribution from $\pi \longrightarrow \pi$ in the whole neutrino energy spectrum

Leo Aliaga

Fermilab long-baseline fluxes

Currently we are working to include the NA61 incident pion on Be and C Phys. Rev. D 100, 112004 (2019)

A Priori Flux Results for NOvA Near Detector

A fully implemented a priori flux prediction in NOvA **>>**

12-10-2020

23

Fermilab long-baseline fluxes Leo Aliaga

A Priori Flux Results for DUNE Near Detector

24 12-10-2020

Fermilab long-baseline fluxes Leo Aliaga

Summary

Summary

- $\rangle\rangle$ MNERvA that allows to extend to the upcoming new data
- \rightarrow small. For instance, NA49 pion production: $\sim 4\%$.
- New data is valuable (and crucial) for our physics program: **>>**
 - The flux simulation is the starting point of the simulation chain for all analysis.
 - The impact on the single detector analysis (such as cross section measurements) is direct
- New data will be incorporate in our framework to be used for the Fermilab long baseline experiments. $\rangle\rangle$

Fermilab long baseline neutrino experiments, such as MINERVA, NOVA and DUNE use external hadron production data to predict the flux in their detectors. A common framework has been pioneer by

For interactions where we use HP data, the uncertainty associated to those interactions is relatively

Backup

27 12-10-2020

Leo Aliaga

Fermilab long-baseline fluxes

NA49 vs NA61

12-10-2020

28

Leo Aliaga I Ferr

Fermilab long-baseline fluxes

