Instrumentation for a low-energy beam

2020/12/10, NA61/SHINE at Low Energy K.Sakashita(KEK/J-PARC) with discussion among N.Charitonidis, C.Mussolini and NA61 collaboration

Introduction

- N.Charitonidis, C.Mussolini are designing the low momentum beamline
- In this talk an initial idea of necessary beam instrumentation will be discussed
 - \cdot as a start point of discussion
 - need optimization

Current design of beamline

Low-E beam momentum rage : 1-15 GeV/c Particle composition : π , K, p, e, μ

Requirements on beam instrumentation

· Trigger

- · Particle identification for π , K, p (also, e ?)
- · Beam profile measurement for beam tuning
- · Particle-by-particle momentum measurement

Time-of-flight, Trigger

· Possible inst. : plastic scintillation counter

 Distance between two TOF counters will be 30~50m

TOF discrimination power assuming 500ps resolution

momentum [GeV/c]

Possible to discriminate π/K/p up to 5~6GeV/c if L=50m

Particle identification

· Gas Cherenkov counters (threshold type)

- \cdot Similar to one used in H2-VLE
 - · 2 m long chambers
- · assuming CO₂ gas filled
- two counters with different pressures to cover a wide momentum range

$$P_{th} = \frac{m^2}{2(n_0 - 1)p^2}$$

P_{th} : Chrenkov threshold pressure [bar] m : particle mass [GeV/c²] p : particle momentum [GeV/c] n₀ : refractive index at 1bar

momentum [GeV/c]

momentum	е	π	K	р
1	CH1 & CH2	TOF	TOF	TOF
3	CH1 & CH2	TOF & CH1	TOF	TOF
5	CH1 & CH2	CH1 & CH2	TOF	TOF
10	CH1 & CH2	CH1 & CH2	CH1 & CH2	CH1 & CH2
15	CH1 & CH2	CH1 & CH2	CH1 & CH2	CH1 & CH2

optimization is necessary

Momentum measurement

- Momentum spread after the collimator will be 5-10%
- · It can be reduced with the momentum measurement by profile monitor
 - · need to consider this necessity in term of requirements from physics targets
 - $\cdot\,$ it is beneficial to keep the beam intensity

 Similar to the existing VLEs, momentum measurement utilizing beam profile monitor is possible solution

Figure 6: Geometry of the VLE spectrometer for momentum analysis.

$$\cos \theta = \frac{L_1(L_4 - L_3) + (x_0 - d_1 - x_1)(x_4 - x_3)}{\sqrt{L_1^2 + (x_0 - d_1 - x_1)^2}\sqrt{(L_4 - L_3)^2 + (x_4 - x_3)^2}}$$

$$p [\text{GeV/c}] = \frac{299.79}{\theta [\text{mrad}]} \times \int Bd\ell [\text{Tm}]$$

Expected dp/p

٠

dp/p ~ 2% is expected

Similar simulation study including the material effect is desired

profile monitor w/ scintillation fiber + SiPM

σ~0.3mm

Beam position detector

- Beam size will bee increased for the low momentum beamline
- Plan to put a "wide-area" beam position detector (BPD) in the front of the NA61 target

Idea of "wide-area" BPD

- \cdot Silicon strip detector (SSD) which is commercially available at Japan
- Plan to proceed R&D of readout electronics etc. and make it ready for the low-E beamline construction
 - primary option of the readout electronics is based on APV25+SRS (CERN RD51)

Dimensional outline (unit: µm)

Entire device drawing

Si strip detector (Hamamatsu S13804)

0.19mm pitch x 512ch x 2

Summary of initial idea of beam instrumentation

Summary

- · Initial idea of beam instrumentation is discussed
- Further study and optimization are necessary
 - · PID method for p > 5 GeV/c
 - Momentum measurement simulation including effect of materials in the beamline
- Detailed design of each instrumentation including choice of detector technology will be also performed