Workshop Conclusion &

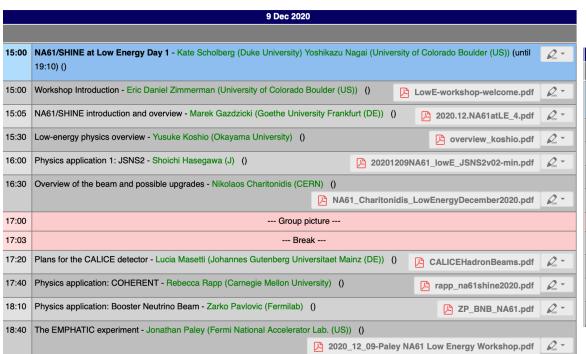
Action Items

Yoshikazu Nagai

December 10, 2020, NA61/SHINE at Low Energy workshop

NA61/SHINE at Low Energy

• Welcome to the workshop!


goal

- Goal is to discuss the physics case and the technical feasibility for a new low-energy hadron physics program at NA61/SHINE
 - Need has been developing for a while
 - Main program would be after LS3, but with interest and resources beam could be available as early as 2024
- Two days of talks, ~4 hours per day
- Long talk slots: time for details and discussion
- Sessions will be recorded: please let us know if you do not want your talk recorded.

Making this physics program happen

next few years endeavor

- Bringing this to reality will require resources and work by NA61 collaborators, and support from outside the collaboration
- Opportunities abound to join NA61 and contribute to these measurements directly! Many other physics topics are available now and in the next couple of years too.,
- Suggestions both technical and physics-related are welcome!
- Please contact the organizing committee and/or NA61 spokespersons Marek Gazdzicki, EDZ (deputy).

We discussed detail on physics applications, project detail, and instrumentation, including nice overviews and introduction on relating project

I will not repeat each detail here since physics motivation has been clearly presented by each presenter. Instead, try to identify necessary actions from now and summarize findings during workshop

Action Items

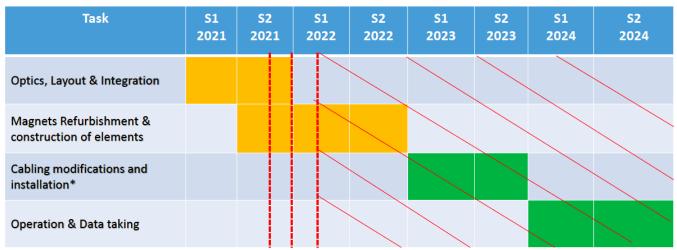
To be an official project at CERN SPS (SPSC report)

- Write a low-E beamline section in annual NA61's Status Report to signal our interests on earlier realization to SPSC (Done in October 2020) see: https://cds.cern.ch/record/2739340
- An open workshop on the low-E beamline project to explore the physics opportunities at the
 H2 beamline (NA61/SHINE) and discuss necessary actions for realization (We are here!)
- Official proposal to the SPSC committee (aiming earlier 2021)

Three parallel studies

- Accelerator design & construction
- Beam instrumentation
- Physics application

Financing


Identifying and investigating funding options outside CERN

SPSC

A preliminary idea of a timeline (pending budget / schedule clarifications)

* Part of the installation should happen in-tandem with beam operation

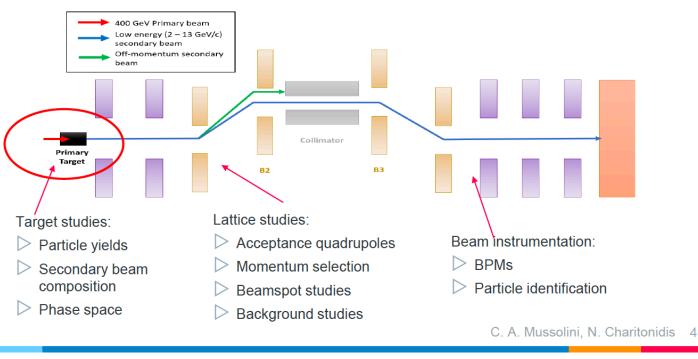
Immediate step would be to submit a **strong physics request** to get endorsed by SPS-C / RB After cost evaluation, investigate options of funding outside CERN?

9/12/2020

N. Charitonidis - Very Low Energy Beams in EHN1

- Project proposal document
- Strong physics motivations as we heard details in this workshop.
 need clear justification, description for measurement plan (PoT, beam type, etc..)
 - Support from community supporting letters attached to the official proposal.
 We'll contact relating parties (private
- unofficial conversation has already started)
 - Working schedule

Next SPSC: 19th Jan. 2021


https://committees.web.cern.ch/spsc

(Next to Next: April 2021, then June, October)

Accelerator design & construction

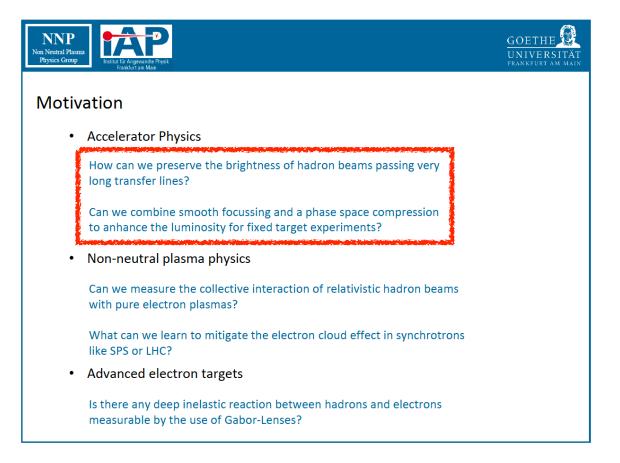
Project overview and design status

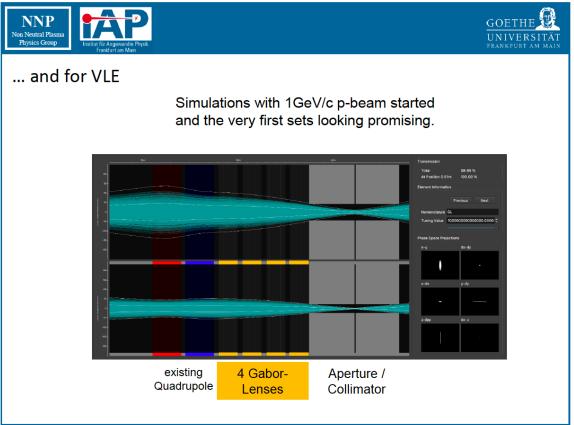
Low-Energy Beamline Conceptual Design

- Three components:
 - Tertiary target station
 - Beamline optics
 - beam instrumentation

Promising progress!

- Schedule:
- With the aim of having a first 'feasible design' in May

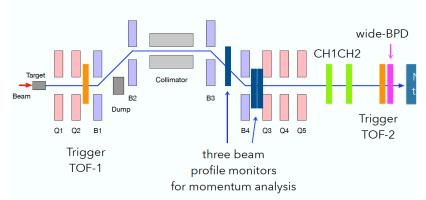

Accelerator design & construction

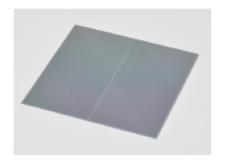

10 Day Preliminary Number of Particles

Preliminary numbers		High Composition Target		Balanced Target		High Yield Target	
for a	10 day run	Number	Composition	Number Composition		Number	Composition
2 GeV/c	Pion+	2,409,000	55.20%	6,237,000	43.80%	10,917,000	25.20%
	Proton	780,000	17.90%	2,700,000	18.90%	3,960,000	9.10%
	Kaon+	33,000	0.80%	93,000	0.70%	168,000	0.40%
	Pion+	4,851,000	71.00%	14,163,000	68.20%	25,416,000	56.30%
4 GeV/c	Proton	960,000	14.10%	2,730,000	13.10%	4,500,000	10.0%
	Kaon+	300,000	4.40%	633,000	3.00%	1,053,000	2.30%
	Pion+	7,461,000	78.70%	19,476,000	76.10%	40,770,000	69.70%
6 GeV/c	Proton	990,000	10.40%	3,210,000	12.50%	6,120,000	10.50%
	Kaon+	663,000	7.00%	1,266,000	4.90%	1,899,000	3.20%
13 GeV/c	Pion+	11,084,100	79.80%	31,800,000	80.80%	75,060,000	81.10%
	Proton	1,290,000	9.30%	4,500,000	11.40%	7,800,000	8.40%
	Kaon+	1,479,000	10.70%	2,451,000	6.20%	5,322,000	5.80%

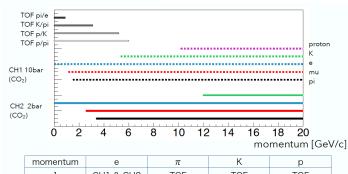
Accelerator design & construction

Further improvement of beam quality may be possible




Beam instrumentation

Necessary additional beam position detector and PID


Summary of initial idea of beam instrumentation

Si strip detector(Hamamatsu S13804)

0.19mm pitch x 512ch x 2

			mo	mentum (Gev
momentum	е	π	K	р
1	CH1 & CH2	TOF	TOF	TOF
3	CH1 & CH2	TOF & CH1	TOF	TOF
5	CH1 & CH2	CH1 & CH2	TOF	TOF
10	CH1 & CH2	CH1 & CH2	CH1 & CH2	CHI & CH2
15	CH1 & CH2	CH1 & CH2	CH1 & CH2	CH1 & CH2

optimization is necessary

- An idea shown for BPD
 - Silicon strip detector to cover wide-area
- Time-of-Flight based PID
 - Detector technology: open question
 - Still need optimization above 5 GeV
- particle-by-particle momentum measurement
 - with beam profile monitors + magnet
- Schedule?

Various ideas presented during "physics application" talks

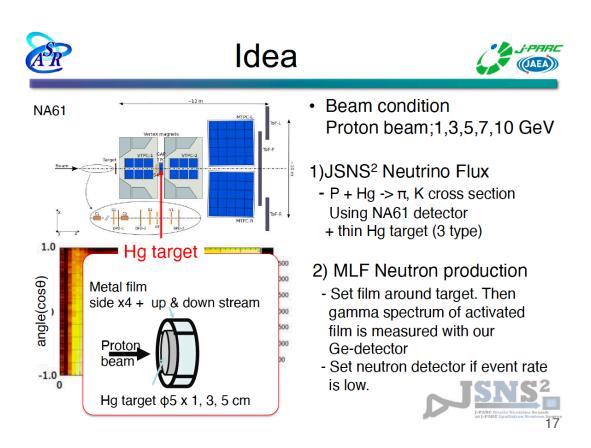
Very low-E proton beam down to ~1 GeV

Conclusion

COHERENT and NA61/SHINE

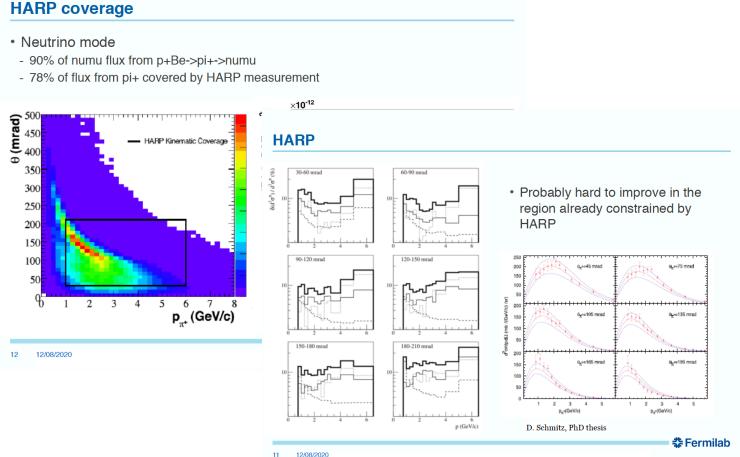
- \diamond Reducing the 10% systematic on the ν flux required for precision CEvNS
- \diamond COHERENT will measure ν flux at the SNS before the beam energy increases in 2024 (D₂O)
- ♦ Hadron production data at 1 GeV will benefit our simulation and design efforts
- ♦ Interested in full cross-section: all product angles and momenta
- \diamond Some specific interests for understanding SNS ν flux:

Component	Materials	Incident proton energy	
FTS target	Hg	≤1.3 GeV	
STS target	W	≤1.3 GeV	
Aluminum window	Al	1 and 1.3 GeV	
Inconel window	Ni, Cr, Fe	1 and 1.3 GeV	
Shielding	Fe, C	≤1.3 GeV	

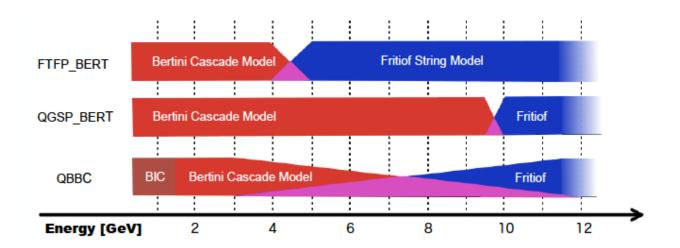


Rebecca Rapp (Carnegie Mellon University)

NA61/SHINE Low-E Beamline impact on COHERENT


20 / 21

Various ideas presented during "physics application" talks


- Very low-E proton beam down to ~1 GeV
- Where should we put target?
- 0

Various ideas presented during "physics application" talks

- Very low-E proton beam down to ~1 GeV
- Where should we put target?
- Possible extension of phase space?
- Possible precision improvement?

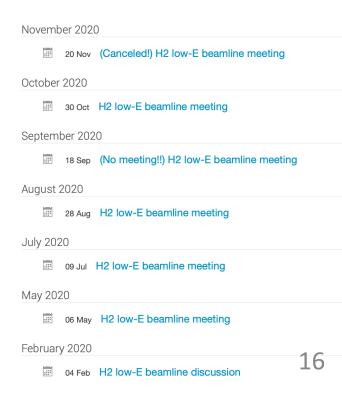
Various ideas presented during "physics application" talks

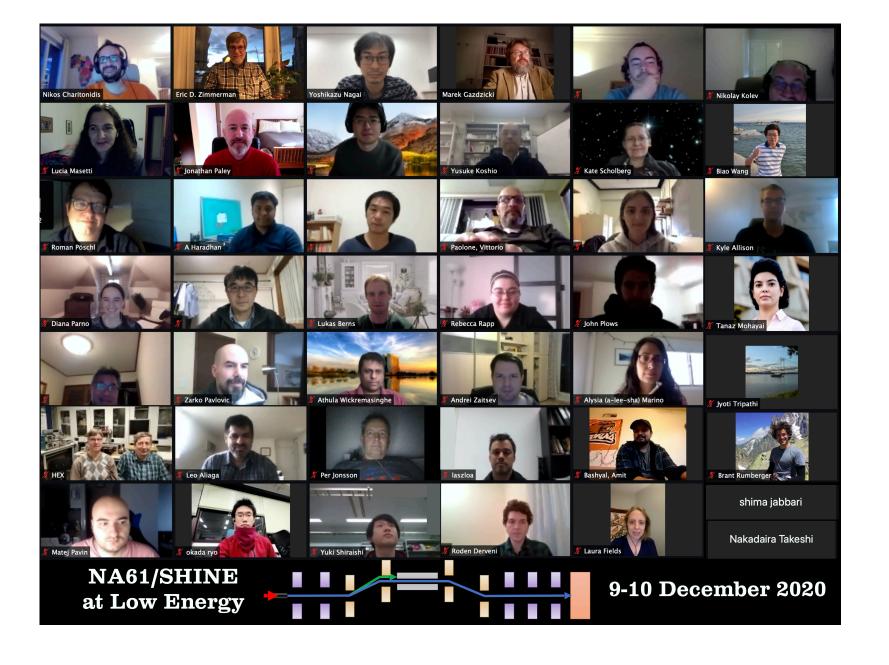
- Very low-E proton beam down to ~1 GeV
- Where should we put target?
- Possible extension of phase space?
- Possible precision improvement?
- Wide E-range at the same beamline

Various ideas presented during "physics application" talks

Wide E-range at the same beamline

and more..!?


(Marek) NA61/SHINE has limited membership system to grant access to the official software framework


Misc.

- The earliest realization of the low-E beamline: end of 2023 or 2024
 - There is a chance for one year data taking before LS3 starts (2025-2026)
 - —> For people requiring the urgent measurements, this is very good opportunity (so far we heard from JSNS²)
 - —> Need to be prepared beforehand (in next 1-2 years)
 - Of course, post-LS3 will be a main beam time utilizing this new beamline!

Announcement

- We have ~monthly meetings for the low-E beamline project (open everyone!)
 - Typically, Friday afternoon in Europe time (but we can try to find an optimum slot)
- Please subscribe to the dedicated e-group
 - "na61-lowe-beamline" from here: https://e-groups.cern.ch
 - (or contact me if you cannot)
 - Meeting announcement is sent to this list
 - Next meeting will be determined later

