

Federal Ministry of Education and Research

CALICE Low Energy Plans

Lucia Masetti Johannes Gutenberg University Mainz - PRISMA+ Cluster of Excellence

NA61/SHINE at Low Energy 09/12/20

Challenges

- Physics requirements e.g. at ILC
 - W/Z separation → 3% energy resolution
 - Particle Flow Algorithm → high granularity
- Technology
 - Low noise SiPMs
 - Highly integrated front-end electronics including trigger and timing
 - Large surface detectors
- Production and system integration
 - Very large number of channels
 - Compact detector operated in magnetic field
 - Low power consumption
- Characterisation with testbeams

Particle flow

General idea

- Base measurement as much as possible on measurement of charged particles in tracking devices
- Separate signals by charged and neutral particles in highly granular calorimeters
- Overlap between showers compromises correct assignment of calorimeter hits
- Granularity used to minimise confusion term

Cluster of Excellence

ΡΡίςΜΔ

NA61/SHINE at Low Energy

80

100 120

140

40

60

80

100 120

140

Technological premises

Highly integrated front end electronics

Miniaturisation of r/o devices

e.g. SKIROC (for SiW Ecal)

Size 7.5 mm x 8.7 mm, 64 channels

- Analogue measurement
- On-chip triggering
- Data buffering
- Digitisation
 - ... all within one ASIC

- Small scinitllating tiles
- (Low noise) SiPMs

Large surface detectors

Si Wafer

RPC layers

Many things that look familiar to you today were/are pioneered/driven by CALICE

Slide by R. Pöschl

L. Masetti - 09/12/20 4

NA61/SHINE at Low Energy

History of R&D

- Physics prototypes 2003-2012
 - Proof of principle of granular calorimeters
 - Large scale combined beam tests
 - Validation of GEANT4 physics lists
- Technological prototypes since 2010
 - Engineering challenges
 - Higher granularity
 - Lower noise
- Linear Collider detectors
 - Typically 10⁸ calorimeter cells

5

JGU JOHANNES GUTENBERG **UNIVERSITAT** MAINZ

Testbeam examples

 Analog HCAL technological prototype at CERN SPS and DESY

oine Laudrain (JGU-Mainz)

- At CERN: electrons, pions and muons, 10-80 GeV
 - Aim to study details of hadron showers and timing performance, using electrons and muons

tion" • CALICE and CMS: HGC only, 1-5 GeV

components, technological results

or CMS HGCAL

of new components in mature CALICE prototypes Airstack Beam telescope

setti - 09/12/20 7 NA61/SHINE at Low Energy

JOHANNES GUTENBERG Common beam tests benefit from common approach within GALICE

Testbedmagaaaa

MAPS ECAL for ALIC

- ALPIDE-based protoresults at DESY
- Testbeam at CERN
- Scintillator ECAL for CEPC
 - New prototype first tested at IHEP
 - Testbeam at DESY planned next year
- Silicon ECAL technological prototype
 - 15-layer prototype being finalised
 - Testbeam at DESY planned next year
- Combined testbeams

PRISMA⁺

L. Masetti - 09/12/20

8

NA61/SHINE at Low Energy

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

mising

Interest in low E H2 line

Beam particles and energies

- Pions, electrons, mixed beams with hadrons and electrons up to 20 GeV to:
 - cover energy of transition region between GEANT 4 physics lists
 - more precise measurement of sampling term for energy resolution
- Neutrons from 50 MeV upwards would be interesting, protons can probably be used as proxy to:
 - study neutron response of different materials in high energy hadronic showers
 - determine resolution of time-of-flight measurement e.g. in DUNE ND

• Advantages of low energy beams at the North Area

 Obvious logistic simplification wrt Eest Area for combined tests at low and high energies

• Required instrumentation

Cluster of Excellence

- Cherenkov counter to particle identification
- Beam telescope for uniformity studies

UNIVERSITAT MAINZ

Conclusions

• CALICE

- Pioneer work in development of highly granular calorimeters, now considered state of the art and under construction for High Luminosity LHC upgrade, e.g. in CMS
- Close collaboration with GEANT 4 developers allowed for improvement of simulation of electromagnetic and hadronic showers
- Platform for exchange on calorimetry development based on different technologies and for usage in several future experiments

• Current and future R&D activities

- Completion of technological prototypes ongoing, to address engineering and construction challenges
- Characterisation of the prototypes in testbeams will be a central activity in the next years

• Interest in low energy beams

• Detectors are planned for high energy physics, but in the R&D phase low energy beams are extremely valuable to improve simulation of single particles in showers

