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Using Deep Learning principles in treating physics data, we 
can generate the simulation output (energy depositions) in a 
fast manner - by employing a Deep Learning generative 
model 

Deep Learning Fast SimulationComputational Requirements

Increasing luminosity and energy of particle accelerators pose 
greater challenges - large MC statistics to model experimental 
data - more collisions = more data = more computing resources 
required

Motivation
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Deep Learning for Fast Simulation & Streamlined DNN Fast Simulation Workflow

- Achieve both computational and statistical 
efficiency in estimating distributions of complex, 
high-dimensional simulation outputs through 
generative deep learning models 

- Implement a full cycle system for Geant4 
integration of Deep Learning utilities, from data 
production through inference integration and 
results validation 

Users

Physics Validation

Model Evaluation

DL Training

Deployment for 
Inference

Detector Geometry 
Description

Geant4

Data Preparation

TensorFlow

                Simulation Data

Input Energy

Generative Model
LOSS

Generated Distribution True Data Distribution

3



Ioana Ifrim - EP-SFT SFT Group Meeting - 7th of December 2020

Deep Learning for Fast Simulation - Goals
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- Estimate distributions of complex, high-dimensional data: 

- One data sample - event - lies in a ~14000 dimensional space (24x24x24)  

-  Features are correlated between event cells  

- Achieve both computational and statistical efficiency: 

-  Efficient training through parallelisation 

-  Expressiveness and generalisation 

-  Event sampling quality and speed  
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- The learning aim is for the parameters within a group of model distributions to minimise the distance between the 
model distribution pθ and our calorimeter showers data distribution pdata:  

- Our choices of design revolve around: 
- which model representation is suitable? 
- what is the objective function of distance, d(⋅)? 
- which optimisation procedure should we use for minimising d(⋅)?

Generative Deep Learning
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- Models learn the probability density function differently:

Generative Models
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The choice of our study 

⁃ Complex modelling of the data distribution   
⁃ Able to encode long term dependencies between energy 

cells 
⁃ Training is highly parallelizable given the type of operations  
⁃ The training is stable 
⁃ Autoregressive factorisation is general: expressivity of 

model  
⁃ Meaningful parameter sharing has good inductive bias => 

good generalisation 

Explicitly - approximation: Variational Autoencoders (VAEs)

Implicitly: Generative Adversarial Networks (GANs)

Commonly studied

https://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-autoencoder-in.html https://tinyurl.com/y2vl6ulm https://deepmind.com/blog/article/wavenet-generative-model-raw-audio 

Explicitly - tractable: AutoRegressive Models
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- Using the Geant4 full simulation toolkit 

- A single particle event for deep learning training is represented by: 

- the label = particle properties (energy, type, …) 
- energy depositions in cylindrical coordinates 

- Flat incoming energy spectrum (1-100 GeV) along z axis 

- For training the data used consisted of 24x24x24 cells in R x Phi x Z coordinates, PbWO4 

Training Data Production  
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EM sum shower for 10, 500 GeV 
electrons
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- Given our dataset D of n-dimensional data points x, we can factorise the 
joint distribution over the n-dimensions as:

Likelihood of event x Probability of i’th energy deposition  
value given all previous depositions

Model Representation - AutoRegressive
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- Correlations between layers are kept given that cell xi is dependant on preceding z layers 
cells, thus physics relevant dependencies between calorimeter cells are implemented

z layers
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- How to model the complex data distribution?  
  

-  use a linear combination of distributions 

Modelling of Data Distribution
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where πi is the probability of the distribution to be picked

- How to generate energy depositions values based on incoming particle properties 

-  predict the distribution of energy depositions, thus any value will have a probability to 
be represented (regardless if it is present or not in the training set, as per softmax)
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- To train sampling layers in the neural network, the objective is to have some output 
distribution parameters that maximise the likelihood of a target y to be sampled from such 
distribution 

- Our loss is comprised of: 

- The loss on the distribution itself (how likely is the distribution to hold the target y)  

- The loss on the distribution selection

Loss Functions
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- Cells are conditioned along the shower development axis while subsequent information is 
blocked 

- The dependency on previous layers is modelled using a Convolutional Neural Network over a 
context region  

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Network Implementation 
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- The network captures the long range structure by downsampling with convolutions of stride 
2 (thus improving the relative size of receptive field); the loss in information is accounted for 
by adding extra short-cut connections 

- The behaviour of a Recurrent Neural Network is emulated with a Convolutional Neural 
Network in order to parallelise the computations and control the access to past information 

https://openreview.net/pdf?id=BJrFC6ceg

24 12 6 6 12 24

Network Implementation 
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- sequence of 6 layers

- stream along (x,y) 

- stream along z

- skip connection 

- convolutional 
connection 
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Training Details and Experiments
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- For these experiments, the “true” data distribution is represented by a total of ~ 1500 events / 
energy label  

-  Data consists of 24x24x24 cells in R x Phi x Z coordinates, PbWO4 

- The aim is to achieve good results on large datasets (where the number of labels differ with the 
energy range and granularity chosen)  

- Since the network is only seeing empirical data distribution, not true data distribution it is 
important for the model to have the ability to generalise: 

1. capture small energy fluctuations (0.1 GeV) - through small label granularity 

2. capture both small and large energy responses accurately 
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Small Label Granularity Experiments
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- Since the network is only seeing empirical data distribution, not true data distribution it is 
important for the model to have the ability to generalise  

- To test the ability to capture small energy fluctuations, the network was trained on : 
- 50 energy labels  
- 10 - 14 GeV network granularity  
- 0.1 GeV label granularity  

-  
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Validation Results - 10 GeV
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Validation Results - 11.5 GeV
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Validation Results - 13.5 GeV
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High Energy Experiments
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- Since the network is only seeing empirical data distribution, not true data distribution, it is 
important for the model to have the ability to generalise  

- To understand the generation quality of large energy labels, the network was trained on : 
- 10 energy labels  
- 90 - 100 GeV network granularity  
- 1 GeV label granularity 



Ioana Ifrim - EP-SFT SFT Group Meeting - 7th of December 2020

Validation Results - 93 GeV
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Validation Results - 95 GeV
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Validation Results - 98 GeV
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Streamlined DNN Fast Simulation Workflow - Goal
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- Develop an end–to–end solution which integrates Deep Learning (DL) simulation methods with 
Geant4

- Steps 1, 3 and 4 are within the Geant4 application, while step 2 is performed independently in 
custom designed tools  

-
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Streamlined DNN Fast Simulation Workflow - Inference Module 
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Inference refers to computing the posterior distribution for the given observation (particle energy/
angle/type):  

- The inference Library builds on top of the TensorFlow C API for seamless integration of inference 
with C++ projects (using CMake) 

- It does not require TensorFlow to be built from source - can be used from LCG or simply download 
pre-compiled headers & libraries and link against them 

- Different generative models can be employed: AutoRegressive Networks, VAEs, GANs 

EM Shower

Trained Network

Geant4

particle energy / angle / type

             Event
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- Repository : https://github.com/ioanaif/dl-inference-module  

- Use the library to integrate and further validate a trained model given the following: 

- The model’s input and output node names, 

- The graph definition in a .pb file as well as the latest checkpoint in .ckpt files, 

- The input data shape information (both for samples and labels),  

- The translation of label to particle energy and of inference output to cell energies 

- Use the library with an integrated, pre-existing trained model: 

- Simply chose a model and pass the desired particle labels for generation of events  

- Integration of this library with Geant4 will result in obtaining simulation events through any of the 
integrated models  

Streamlined DNN Fast Simulation Workflow - Inference Module 

https://github.com/ioanaif/dl-inference-module
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Observations & Enhancement Possibilities
- This implementation exploits the causal structure of the generative process and preserves layer 

wise correlations which proved crucial for improving events generation quality 

- The network is able to generate shower events without overfitting of implementation on use-case * 

From a production-level enhancements possibilities perspective, the important aspects are: 

- the energy label can be extended to include angle (extending one-hot encoding) 

            -   *a better data transformation procedure for labels above 20GeV will help improve the 1st/
2nd moments network results on high energies 

- interpolation can be used to increase label granularity while network granularity can be a 
constant (https://arxiv.org/pdf/1912.05015v2.pdf) 

- graph autoregressive networks could be a natural extension for this work suitable for 
solving geometry issues

https://arxiv.org/pdf/1912.05015v2.pdf


Thank you! 

Ioana Ifrim
EP-SFT


